

Copyright

by

Andrew David Slininger

2011

The Report Committee for Andrew David Slininger

Certifies that this is the approved version of the following report:

Application of Single and Multi-touch Gestures in a WebGL Molecule

Viewer

APPROVED BY

SUPERVISING COMMITTEE:

Chandrajit Bajaj

Kelly Gaither

Supervisor:

Application of Single and Multi-touch Gestures in a WebGL Molecule

Viewer

by

Andrew David Slininger, B.S.Biomed.E.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2011

 iv

Acknowledgements

I would like to thank Dr. Bajaj for continually meeting with me and keeping me

on topic. My report would have been extremely unfocused and rambling without his help.

I would also like to thank Brandt Westing. He lent me his expertise and use of the Texas

Advanced Computing Center’s formidable equipment including a large touch sensitive

perimeter device.

 v

Abstract

Application of Single and Multi-touch Gestures in a WebGL Molecule

Viewer

by

Andrew David Slininger, MSE

The University of Texas at Austin, 2011

SUPERVISOR: Chandrajit Bajaj

The number of devices with touch input such as smart phones, computers, and

tablets has grown extensively in recent years. Native applications on these devices have

access to this touch and gesture information and can provide a rich, interactive

experience. Web applications, however, lack a consistent and uniform way to retrieve

touch and gesture input. With the quality and robustness of web applications continually

growing and replacing native applications in many areas, a way to access and harness

touch input is critical. This paper proposes two JavaScript libraries that provide a reliable

and easy way for web applications to use touch efficiently and effectively. First, getTjs

abstracts the gathering of touch events for most mobile and desktop touch devices.

GenGesjs, the second library, receives this information and identifies gestures based on

the touch input. Web applications can have this gesture information pushed to them as it

is received or instead request the most recent gestures when desired. An example of

interfacing with both libraries is provided in the form of WebMol. WebMol is a web

 vi

application that allows for three dimensional viewing of molecules using WebGL.

Gestures from GenGesjs are translated to interactions with the molecules, providing an

intuitive interface for users. Using both of these libraries, web applications can easily tap

into touch input resulting in an improved user experience regardless of the device.

 vii

Table of Contents

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ..1

Background ...1

Mobile touch devices ..1

Desktop touch devices ..3

Chapter 2: Touch Implementation ...5

Chapter 3: Gestures ..6

Chapter 4: Gesture Implementation ...12

Chapter 5: Application ...16

Tap ..17

Double Tap..17

Drag ..18

Flick ..18

Pinch ...18

Spread ...18

Press ..19

Press and Tap ..19

Press and Drag ..19

Rotate ..19

Chapter 6: Future Work ...20

Chapter 7: Conclusion..22

Appendix – getTjs, GenGesjs pseudo code and implementation23

References ..24

 viii

List of Tables

Table 1: W3C Touch Events Draft. ...2

Table 2: W3C Touch Event Attributes Draft. ..2

Table 3: Devices and the methods getTjs uses to extract touch movement.5

Table 4: Tap Gesture. ...6

Table 5: Double Tap Gesture. ..7

Table 6: Drag Gesture. ...7

Table 7: Flick Gesture. ...8

Table 8: Pinch Gesture. ..8

Table 9: Spread Gesture. ..9

Table 10: Press Gesture. ..9

Table 11: Press and Tap Gesture. ..10

Table 12: Press and Drag Gesture. ...10

Table 13: Rotate Gesture. ..11

 ix

List of Figures

Figure 1: TUIO output on port 3333 showing two touch points..............................4

Figure 2: getTjs and GenGesjs implementation overview for a mobile device.12

Figure 3: getTjs and GenGesjs implementation for a desktop touch device.13

Figure 4: Mouse event equivalent of gestures ...14

Figure 5: A molecule rendered in WebMol. ..16

Figure 6: Axes comparison before and after a perspective change. Note the viewport

axes do not change. ...17

 1

Chapter 1: Introduction

BACKGROUND

Devices with touch user interfaces have become very prevalent, largely fueled by

the spread of smartphones and tablets. Native applications and operating systems

running on these devices have harnessed the power of these input devices to provide a

richer and more interactive user experience. A second trend is the growth of powerful

web applications that have replaced many desktop applications. These robust web

applications have several benefits over their desktop counterparts, one in particular being

that they are accessible across a multitude of devices assuming a nearly ubiquitous

internet connection is available. Combining the two has obvious benefits; pair the

interactivity of multi-touch with rich, accessible web applications. Implementing this to

work with all touch devices, however, requires a two-step approach.

MOBILE TOUCH DEVICES

Mobile touch devices are built from the ground up to support touch as often this is

the only user input device available. This native support translates to JavaScript

navigation events that are fired much like mouse events supported by all modern

browsers. The iOS browser even supports gesture events that can return common

gestures such as rotate or pinch to zoom1. However, there is no standardization of these

events between mobile operating systems and the W3C Web Events Working Group is

just now publishing a first draft2. Fortunately this draft follows, to a degree, the already

implemented events by the most common mobile devices (Android, iOS).

1 Apple Inc., “Gesture Event Class Reference”, Apple Inc.,

http://developer.apple.com/library/safari/#documentation/UserExperience/Reference/GestureEventClassRe

ference/GestureEvent/GestureEvent.html#//apple_ref/javascript/cl/GestureEvent (accessed July 22, 2011).
2 W3C, “Touch Events Specification”, W3C,

https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html (accessed July 24, 2011).

http://developer.apple.com/library/safari/#documentation/UserExperience/Reference/GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_ref/javascript/cl/GestureEvent
http://developer.apple.com/library/safari/#documentation/UserExperience/Reference/GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_ref/javascript/cl/GestureEvent
https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html

 2

Event Description

touchstart Event when a new touch point is placed on

the touch surface

touchend Event when a touch point is removed from

the touch surface

touchmove Event when a touch point is moved along

the touch surface

touchenter Event when a new touch point enters a

special area defined by the web page

touchleave Event when a new touch point leaves a

special area defined by the web page

touchcancel Event when a touch point is lost, either

intentionally or unintentionally

Table 1: W3C Touch Events Draft.

Attribute Description

clientX X-coordinate of point relative to the

viewport, excluding any scroll offset

clientY Y-coordinate of point relative to the

viewport, excluding any scroll offset

force The force of the touch event

identifier A value that is unique for each touch point.

Allows tracking touch points over time.

pageX X-coordinate of point relative to the

viewport, including any scroll offset

pageY Y-coordinate of point relative to the

viewport, including any scroll offset

radiusX The radius of the ellipse which

circumscribes the touch area along the x-

axis, in pixels of the same scale as screenX

radiusY The radius of the ellipse which

circumscribes the touch area along the y-

axis, in pixels of the same scale as screenY

rotationAngle The angle (in degrees) that the ellipse

described by radiusX and radiusY is

rotated clockwise about its center

screenX X-coordinate of point relative to the screen

screenY Y-coordinate of point relative to the screen

Table 2: W3C Touch Event Attributes Draft.

 3

The events of most interest are touchmove, touchend, and touchstart. These are

already implemented in the Android and iOS browsers. They fire every time a touch

input is detected and returns an array of events, one for each touch point. Using the

event’s identifier and x and y coordinates over time, gestures can be determined.

DESKTOP TOUCH DEVICES

While not nearly as widespread as mobile touch devices, desktop touch devices

are becoming much more common. This is a growing field with a number of new

devices hitting the market.

Touch events on desktop devices are much more difficult to capture in the web

browser. Unlike mobile devices, they are not passed along from the OS. This means the

JavaScript events such as touchmove are not supported and never fire. Instead, these

must be retrieved from the touch input device’s drivers. The difficulty is that for security

reasons the browser restricts access to the local file system. This prevents code from a

malicious website disrupting anything on the user’s computer; it is contained in a

sandbox. A browser specific plugin or a flash helper is the most common way to gain

access to the local system to read or parse in touch events. These must be installed by the

user and aren’t restricted to the browser’s sandbox.

The Microsoft Kinect is one such device that uses a camera in combination with

an infrared projector/camera to track user input. Depthjs is a project that uses a

JavaScript library along with a browser plugin to push Kinect movements to the

browser3. Touch sensitive perimeter devices use an infrared frame around the perimeter

of the screen to detect input. Many of these devices use a framework known as TIUO to

provide an API for capturing touch events. Events are broadcast as an array on the local

3 Aaron Zinman and others, “Depthjs”, MIT Media Lab,

http://depthjs.media.mit.edu/ (accessed July 19, 2011).

http://depthjs.media.mit.edu/

 4

host’s port 3333. Each touch point is represented as an element in the array and contains

its ID, X and Y coordinates relative to the screen, speed, and acceleration. Accessing

these events in a web browser requires a browser specific plugin, npTuioClient, along

with a JavaScript library, TUIOjs 4.

Figure 1: TUIO output on port 3333 showing two touch points.

4 TUIO, “Software Implementing TUIO”, TUIO,

http://www.tuio.org/?software (accessed July 15, 2011).

http://www.tuio.org/?software

 5

Chapter 2: Touch Implementation

Due to the differences in touch input devices and how touch events are gathered,

the best route to implementing a universal touch input web application is to abstract the

gathering of these touch events to a JavaScript library, getTjs. This library will hide the

constantly changing browser touch support from the creation of gestures. It will gather

events from the three groups of devices described earlier: mouse, mobile touch, and

desktop touch.

Device Method

Mouse JavaScript mouse events

Mobile Touch JavaScript touch events

Desktop Touch Browser Plugin and JavaScript library to

return TUIO server running on the host

Table 3: Devices and the methods getTjs uses to extract touch movement.

Every time a touch movement is detected getTjs will extract the touch movements

into an array. Each element of the array will be an object with an X and a Y value

representing the location of the touch point on the screen. In the case of only having a

mouse available, this array will only have one element. getTjs will pass this array to

another JavaScript library or to the application by calling a function that must be

implemented, buildgestures. If this function is not implemented, getTjs will continue to

parse the events harmlessly without passing them along. Even though more detailed

touch information is supported by several of the touch devices, this is enough information

to build gestures and basic enough that all touch devices can provide it.

 6

Chapter 3: Gestures

Gestures are a way of translating touch events controlled by the user into

meaningful commands for the application. Most mobile touch devices implement a

number of gestures for OS navigation and native applications. Very few provide any

support in the browser so this must be handled by the web application. There are many

different gesture definitions but the most thorough is the “Touch Gesture Reference

Guide” by Luke Wroblewski5. The core set of gestures described can be implemented in

a very useful way for browser interaction (Tables 4-13).

Name Tap

Description A single touch that lasts a short period of time. This is analogous to a

left mouse click.

Uses A select command

Image

Table 4: Tap Gesture
5
.

5 Luke Wroblewski, “Touch Gesture Reference Guide”, LukeW Ideation + Design,

http://www.lukew.com/ff/entry.asp?1071 (accessed July 15, 2011).

http://www.lukew.com/ff/entry.asp?1071

 7

Name Double Tap

Description A short touch and release followed by another short touch and release

in the same location. If too much time passes between touches it will

be interpreted as two separate tap gestures. This is analogous to a

double left click with a mouse.

Uses An emphasized select command. It can be used to bring an element

into focus or to open it.

Image

Table 5: Double Tap Gesture
5
.

Name Drag

Description A single touch and then slow movement without loss of contact.

Uses If started at the position of an element on the screen, it can often

represent movement of this element to another location. If the

element is three dimensional and anchored to an axis, it could

represent rotation around that axis. It can also adjust a variable

attached to a slider scale such as increasing volume.

Image

Table 6: Drag Gesture
5
.

 8

Name Flick

Description A single touch followed quick continuous movement, usually in a

single direction. The movement speed must be above a certain

threshold to distinguish it from a drag.

Uses Moves an element out of focus or to some other partition in the

application.

Image

Table 7: Flick Gesture
5
.

Name Pinch

Description Two touch points made at the same time and both moved toward each

other at a similar speed.

Uses Zooming out the view of the application. If an element is in focus or

if the pinch is performed directly on top of an element it will be scale

it down to a smaller size.

Image

Table 8: Pinch Gesture
5
.

 9

Name Spread

Description Two touch points made in close vicinity and then both moved in

opposite directions at a similar speed.

Uses Zooming in the view of the application. If an element is in focus or if

the pinch is performed directly on top of an element it will be scale it

up to a larger size.

Image

Table 9: Spread Gesture
5
.

Name Press

Description A single touch point in one location that is held. Must last longer

than a certain threshold or be interpreted as a tap.

Uses An emphasized select command, analogous to a right click from a

mouse. It is often used to bring up secondary menus or options for

the element selected.

Image

Table 10: Press Gesture
5

 10

Name Press and Tap

Description A press followed by a tap while the press is still being held.

Uses An emphasized select. It can also move an element from the press

location to the tap location.

Image

Table 11: Press and Tap Gesture
5
.

Name Press and Drag

Description A single touch followed by a drag made while the touch is still being

held.

Uses A drag command that is focused on a specific element. If a drag will

perform an action on a group elements or the entire application, the

press and drag will only perform the action on the element that is

selected by the press

Image

Table 12: Press and Drag Gesture
5
.

 11

Name Rotate

Description A circular gesture performed by two touch points. Rotate can be

performed in several ways. One is by making two touch points separated

by a small distance and moving them both in a clockwise or counter-

clockwise motion. Two presses where one is rotated in a clockwise or

counter-clockwise motion while the other stays stationary is a second way.

Lastly, two presses made in close vicinity and moved in the same

clockwise or counterclockwise motion can represent a rotate. The two

presses distinguish it from an arcing drag.

Uses Rotate either the view of the application or an element. The rotate

technique involving a held press with one touch point and rotate with the

other in particular will rotate the element selected by the press.

Image

Table 13: Rotate Gesture
5
.

 12

Chapter 4: Gesture Implementation

Constructing gestures from touch coordinates can also be abstracted to a separate

JavaScript library, GenGesjs. GenGesjs will receive touch events by interfacing with

getTjs. It does this by implementing the buildgestures function that getTjs calls every

time it has a new touch event. One of the most difficult aspects of creating gestures is that

they are built from touch points over time. In order to detect a gesture, GenGesjs must

keep historic touch data to compare to the incoming data. This allows it to detect touch

changes overtime and translate them to gestures.

Web Application

getTjs

GenGesjs

1

2

3

4

5

1. A user initiates a touch event

with the browser open.

2. Touch event handlers in the

browser fire pass this touch

information to getTjs.

3. getTjs formats these touch

events and passes them to

GenGesjs.

4. GenGesjs translates the

touch movements to gestures

and passes them to the web

application that is running in the

browser.

5. The web application

interprets these gestures as

user interaction and updates

controls/view/data accordingly.

Figure 2: getTjs and GenGesjs implementation overview for a mobile device.

 13

Web Application

getTjs

GenGesjs

1

Touch Device

Drivers

TUIO Server

npTUIOCLient

Browser Plugin

TUIOjs

2

3

4

5
6

7

8

9

1. A user initiates a touch event with the

browser open.

2. Device drivers created by the touch

device manufacturer capture the touch

input.

3. The touch drivers pass this

information to a TUIO server running on

the device.

4. A browser plugin picks up events

from the TUIO server.

5. TUIOjs retrieves the touch events

from the browser plugin.

6. getTjs retrieves the events from

TUIOjs and formats them in a uniform

manner.

7. getTjs passes the formatted touch

events to GenGesjs.

8. GenGesjs translates the touch

movements to gestures and passes

them to the web application that is

running in the browser.

9. The web application interprets these

gestures as user interaction and

updates controls/view/data accordingly.

Figure 3: getTjs and GenGesjs implementation for a desktop touch device.

GenGesjs will create a gesture object for gestures it detects. Each gesture object

has several required attributes: the gesture type and the X and Y coordinates of the focus

of the gesture. It also has several optional attributes that may contain data depending on

the gesture: distance, secondary X and Y coordinates, and rotation. Distance is a number

that represents how far a gesture has moved since it was last reported to the application.

For example if a user starts a pinch gesture, GenGesjs will detect the gesture and based

on how far the touch points have traveled, compute the distance and pass it to the web

application. Gestures that will have a value for distance are drag, flick, pinch, spread,

 14

and press and drag. Rotation is a value that represents the amount of rotation in degrees

since the value was last passed to the web application. The rotation gesture is the only

gesture that will contain a rotation value.

GenGesjs will not only have to build gestures from touch events, it will also have

to build gestures from mouse events. This will allow applications using GenGesjs to

simply react to the list of gestures and not worry about the user’s input environment.

Gesture Mouse Implementation

Tap Left click.

Double Tap Left double click.

Drag A left click, moving slowly while left click

is held, and then releasing the left click.

Flick A left click, moving very quickly the while

left click is held, and then releasing the left

click

Pinch Scroll wheel up.

Spread Scroll wheel down.

Press Right click.

Press and Tap A right click with the left control keyboard

button pressed. A single left click

somewhere else on the viewport with the

left control still being held.

Press and Drag A right click with the left control keyboard

button pressed. The mouse must then be

moved with the right click and left control

still held. When either the right click or the

left control is released the gesture is

completed.

Rotate Hold the left alt key and scroll the mouse

wheel. Scrolling up is clockwise rotation

and scrolling down is a counter-clockwise

rotation.

Figure 4: Mouse event equivalent of gestures

 15

Once GenGesjs has identified a gesture, it can pass this to an application in two

ways. The first is an event based approach. As soon as GenGesjs identifies a gesture it

calls a function, eventicked, that must be implemented by the application and passes the

gesture object to it as a parameter. In the eventicked function the application will

interpret the effects of the gesture and perform necessary updates. In this model, updates

to the application are completely touch event driven. When a user provides touch

interaction the application responds. The second approach is application driven.

GenGesjs provides a function, returngestures, that returns an array of gesture objects

since the last time it was called. Applications that are continually refreshing their state on

an interval can call this on every refresh to get an array of gestures that have occurred

since the last refresh. The application will then preform necessary updates based on these

gestures. This application driven model is very common with WebGL applications,

especially ones that show animation.

 16

Chapter 5: Application

WebMol is a WebGL application that can parse and display Protein Data Bank

(PDB) files in a web browser. One or more molecules can be displayed in 3-D in a

viewport in the center of the webpage.

Figure 5: A molecule rendered in WebMol.

Each of the gestures described before can be used to interact with the viewport or

with the rendered molecule such as moving it in space or changing one of its attributes

such as size or opacity. WebMol and most other WebGL applications operate in three

dimensions with three axes: X, Y and Z. Objects have an X, Y and Z value that represent

their location in this space. What is displayed in the WebGL viewport is one perspective

of this three-dimensional space. When building a powerful interface for WebGL we need

not only a way to move molecules or other objects around, we also need a way to change

our perspective. For example if a WebMol scene exists with two molecules, we first need

to be able to move the molecules by performing actions such as rotating them and

changing their X, Y, and Z values in relation to each other. We also need to change our

perspective of these molecules such as viewing them from different angles or from

 17

different distances. It is critical that we are able to do both using either gestures or a

mouse. It is important to note that even though the WebGL three-dimensional space has

fixed X, Y and Z axes, the viewport perspective does not. Horizontal is always the X

axis, vertical is always the Y axis, and towards and away from the viewport is the always

Z axis even if the scene is rotated and manipulated (Figure 6).

Figure 6: Axes comparison before and after a perspective change. Note the viewport

axes do not change.

TAP

No action will happen when used in the viewport; the tap gesture will be used for

manipulating the menu such as loading new molecules.

DOUBLE TAP

When performed on a molecule in the viewport, the double tap will select the

molecule and open up more options that can be performed both with gestures and with

the menu. If there are several molecules at the location of the double tap, the molecule

closest to the viewport perspective will be selected. When selected, a molecule will have

its opacity decreased to visually indicate that it has been selected and the menu will

display the name of the selected molecule. The viewport will also “snap” to molecule,

 18

moving so the molecule is in the center and anchoring it as the new origin of the viewport

perspective.

DRAG

If no molecule is selected the drag gesture will rotate the entire scene about the

origin. A horizontal drag will rotate around the viewport perspective’s Y axis, a vertical

drag will rotate around the viewport perspective’s X axis, and a combination will rotate

around both. If a molecule is selected, a drag will rotate around the molecule instead of

the origin.

FLICK

 If no molecule is selected a flick gesture behaves the same as a drag, rotating the

scene. If a molecule is selected, the flick gesture will remove it from the scene.

PINCH

If no molecule is selected, the pinch gesture will zoom out the viewport from the

origin by increasing the z value between the viewport perspective and the origin. If a

molecule is selected, it will zoom away from the molecule. This will make the scene

appear more distant. A maximum value exists that prevents zooming out too far.

SPREAD

If no molecule is selected, the spread gesture will zoom in the viewport towards

the origin by decreasing the z value between the viewport perspective and the origin. If a

molecule is selected, it will zoom in towards the molecule. This will make the scene

appear closer. A minimum value exists that is the maximum the scene can be zoomed in.

 19

PRESS

If performed on a molecule, the press gesture will open a menu that will allow

actions to be performed on the molecule such as removing it, changing its color, etc. If

performed where no molecule exists, a menu will appear that will allow properties or

options to be set that affect the entire scene.

PRESS AND TAP

Press and tap when performed on a molecule will move the molecule to the

location of the tap. This will move the molecule in two directions, the distance from the

viewport perspective will stay the same.

PRESS AND DRAG

A press and drag with the press performed on a molecule will rotate the molecule.

A horizontal drag will rotate the molecule around the viewport perspective’s Y axis, a

vertical drag will rotate around the viewport perspective’s X, and a combination will

rotate around both.

ROTATE

A rotate gesture performed without a molecule selected will rotate about the

viewport perspective’s Z axis with the origin. With a molecule selected, it will rotate

about the viewport perspective’s Z axis with the molecule.

 20

Chapter 6: Future Work

This paper describes in detail how getTjs and GenGesjs work and how to

implement them in an application but only provides pseudo code. Full working code for

both libraries as well as integration with WebMol is the next step. A detailed description

of how GenGesjs will build each gesture is necessary. Some additional gestures also

need to be added such as a three finger swipe that can provide more functionality. One

particular case this is needed is with rotating elements around all three axes. In the

current form, the viewport perspective can be rotated in all three dimensions and zoomed

in and out with gestures. Each molecule can be moved in all three directions but can only

be rotated in two.

One thing to consider is how browsers will handle touch events in the future as

touch based devices are used more and more frequently to access and use the internet.

getTjs may become obsolete as all browsers will eventually implement the W3C Touch

Events Specification. This would allow the gathering of touch events to be simplified

and integrated into GenGesjs. Some of the functionality of GenGesjs may also be

replaced if a W3C specification for gestures is published and implemented by browsers.

This would probably be similar to what is already implemented in mobile Safari,

allowing the browser to handle all detection of gestures. Event handlers could be bound

to these events in web applications using JavaScript and then utilized. This would

change the role of GenGesjs to be used as a library for custom gestures to be built from

the browser touch events as well as a library for accessing the gestures in a polling format

instead of an event based one. Many WebGL applications use a timer function to

constantly rebuild the scene they are displaying. GenGesjs would catch every gesture

event and make them available via the returngestures function for the application to call

 21

at every refresh. GenGesjs could also be more tightly integrated with navigating three-

dimensional space in WebGL applications. The implementation of how the gestures are

used in WebMol could be implemented in GenGesjs instead, allowing it to act directly on

the viewport for any type of similar WebGL application. For example, a beating heart

represented in WebGL could interpret gestures in the same way as WebMol for

navigating three-dimensional space and manipulating elements.

 22

Chapter 7: Conclusion

WebMol and many other WebGL applications are extremely visual and lend

themselves to viewing on touch based devices. Interactions with objects in three-

dimensional space are much more fluid using multi-touch gestures. 3-D objects can be

rotated, moved, and resized using touch input. Currently devices lack a way to access

these touches events in the browser and use them with WebGL applications. This puts

WebGL applications at a disadvantage to native applications that support multi-touch and

weakens the WebGL platform. getTjs and GenGesjs provide a way for web applications

to add touch support with minimal difficulty. No matter what hardware or browser is

used to view the application, the same sets of gestures are detected. getTjs gathers touch

information from the large number of unstandardized touch devices and GenGesjs

translates the touch input into gestures. Implementing these gestures into a WebGL

application yields a highly interactive and rich experience as demonstrated with WebMol.

 23

Appendix – getTjs, GenGesjs pseudo code and implementation

//getTjs

$(window).bind('mousemove touchmove', function (e) {
 //parse out the coordinates etc goes here

buildgestures(mycordarray);
});

//GenGesjs

var currentgesture = new Object();

var lastgesture = new Object();

function buildgestures(cordarray)
{
 //build gestures from cordarray

 //compare to last gesture

 currentgesture.type="pinchzoom":
 currentgesture.strength=".7";
 currentgesture.focusx=45;
 currentgesture.focusy=55;

 //if event driven this will execute
 //if not, gestures passed up via returngestures()
 if (jQuery.isFunction(eventticked) {
 eventticked(currentgesture);
 }

}

function returngestures()
{

 //return some sort of gesture array
 return currentgesture;
}

//application

//continuous redraw implementation

function tick() {
 requestAnimFrame(tick);
 var nowgesture=returngestures();
 drawScene(nowgesture);
 animate();
 }

//event based redraw

function eventticked(pushedgesture){
 drawScene(pushedgesture);
}

 24

References

Apple Inc., “Gesture Event Class Reference”, Apple Inc.,

http://developer.apple.com/library/safari/#documentation/UserExperience/Referen

ce/GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_ref/javascript/

cl/GestureEvent.

TUIO, “Software Implementing TUIO”, TUIO,

http://www.tuio.org/?software.

W3C, “Touch Events Specification”, W3C,

https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html.

Wroblewski, Luke. “Touch Gesture Reference Guide”, LukeW Ideation + Design,

http://www.lukew.com/ff/entry.asp?1071.

Zinman, Aaron and others. “Depthjs”, MIT Media Lab,

http://depthjs.media.mit.edu/.

http://developer.apple.com/library/safari/#documentation/UserExperience/Reference/GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_ref/javascript/cl/GestureEvent
http://developer.apple.com/library/safari/#documentation/UserExperience/Reference/GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_ref/javascript/cl/GestureEvent
http://developer.apple.com/library/safari/#documentation/UserExperience/Reference/GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_ref/javascript/cl/GestureEvent
http://www.tuio.org/?software
https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html
http://www.lukew.com/ff/entry.asp?1071
http://depthjs.media.mit.edu/

