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Abstract
Cascadia is a system that provides RFID-based per-

vasive computing applications with an infrastructure for
specifying, extracting and managing meaningful high-level
events from raw RFID data. Cascadia provides three im-
portant services. First, it allows application developers and
even users to specify events using either a declarative query
language or an intuitive visual language based on direct
manipulation. Second, it provides an API that facilitates
the development of applications which rely on RFID-based
events. Third, it automatically detects the specified events,
forwards them to registered applications and stores them for
later use (e.g., for historical queries).

We present the design and implementation of Cascadia
along with an evaluation that includes both a user study
and measurements on traces collected in a building-wide
RFID deployment. To demonstrate how Cascadia facilitates
application development, we built a simple digital diary
application in the form of a calendar that populates itself
with RFID-based events. Cascadia copes with ambiguous
RFID data and limitations in an RFID deployment by trans-
forming RFID readings into probabilistic events. We show
that this approach outperforms deterministic event detec-
tion techniques while avoiding the need to specify and train
sophisticated models.

1. Introduction
Radio Frequency Identification (RFID) technology has

become increasingly popular in the last several years. New
applications that use this technology are emerging both in
industrial settings (e.g., supply-chain management [21, 54])
and pervasive computing environments (e.g., elder-care [44]
and hospitals [48]). RFID enables applications to track the
movements of objects and people carrying small RFID tags
in an environment equipped with RFID readers.

In an RFID system, RFID readers produce streams
of tag-read events (TREs) of the form (time, tag id,

antenna id) that indicate when and where tags are be-
ing detected. The antenna id is a unique identifier for

the RFID antenna1 that detected the tag. RFID applications
transform low-level TRE streams into meaningful higher-
level events. In supply-chain management, for example,
TREs can be used to analyze the efficiency of the supply-
chain process by tracking the locations that products visit
(e.g., factory, distribution center, store). In a friend-finder
application [53], TRE streams can serve to automate sharing
of a user’s current or historical location, as well as the activ-
ities they perform (e.g., having lunch). Finally, in the hospi-
tal scenario, TREs can help monitor the location and status
of patients, staff members, and equipment [48]. For sim-
plicity, we use a digital diary application as a running exam-
ple in this paper. This application automatically populates a
user’s calendar with higher-level events (e.g.meetings, en-
counters, breaks) which are generated as the user moves
through an office building with his RFID tags.

We propose Cascadia, a new infrastructure that greatly
simplifies the development of pervasive RFID applications
such as those described above. Our focus is on large-scale,
passive RFID deployments within a single administrative
domain such as a hospital, corporate or academic cam-
pus. We experiment with our own infrastructure, the RFID
Ecosystem [53], which includes hundreds of RFID readers
and thousands of passive EPC Gen 2 tags throughout the
Paul G. Allen Center for Computer Science and Engineer-
ing at the University of Washington.

1.1. Motivation

A common way to architect a large-scale RFID appli-
cation is to use a relational database management system
(RDBMS). The TREs are stored directly in an RDBMS ta-
ble. New events are expressed as queries and alerts are
handled with triggers. This approach is perfectly adequate
when applications change infrequently and are based pri-
marily on TREs from readers at a few key locations – pre-
cisely the context of supply-chain management systems. In
fact, all major RDBMS vendors now provide support for

1An RFID reader typically has multiple antennas (ours have four) that
can be spread several meters away from the reader and from each other.
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these types of applications (e.g., [41]). However, in a per-
vasive computing environment, the mix of applications is
much more dynamic and events are based on complex and
often user-specific conditions. Moreover, events in a per-
vasive setting are likely to occur throughout a denser, more
diverse set of locations, not all of which are likely to be
equipped with an RFID reader.

As an example, a typical event in the supply-chain set-
ting is the transition of a package from its source to its des-
tination [54]. Detecting this event amounts to executing a
simple query over TREs and computing a time difference.
In contrast, a typical pervasive computing event is the de-
termination that a particular group of individuals were in-
volved in a meeting. This is a more complex event as the
individuals may be only a subset of a larger group and may
meet in any one of many locations. Furthermore, the chance
of incomplete information and missed readings is likely to
be much higher in a pervasive environment [56] due to de-
ployment limitations and because the movement of people
is less easily regulated and constrained as compared to a
package passing through a loading dock door. As a result,
the higher-level events used by RFID applications are more
difficult to specify, detect and manage.

1.2. Contributions

Cascadia addresses the above challenges by providing
an infrastructure for building pervasive RFID applications.
In general, Cascadia simplifies application development in
three ways: (1) it hides the low-level details of limited de-
ployments and dirty TRE streams by exposing a high-level
model of probabilistic entity movements through space; (2)
it provides declarative and visual means for specifying so-
phisticated events on top of location information; and (3)
it facilitates management of these high-level events with a
simple event-based API. These high-level properties trans-
late into the following detailed services.

1. Decoupling applications from low-level RFID data.
Because RFID data is incomplete, dirty and often am-
biguous, Cascadia uses a probabilistic model for tag
movements through an environment and for the result-
ing events. Applications operate on that model rather
than on the raw TREs (Sections 2 and 3.1).

2. Enabling developers and users to define high-level
events. In Cascadia, applications specify high-level
RFID events in a declarative fashion using PeexL, a se-
quence language with a SQL-like syntax but designed
to handle dirty data and uncertain events (Section 3.2).
Cascadia also provides an intuitive graphical interface,
called Scenic, for generating event specifications in Pe-
exL (Section 3.3).

3. Enabling continuous high-level event detection
from lower-level event streams. Cascadia includes
PEEX, a Probabilistic Event EXtractor that continu-

ously extracts developer and user-defined events (Sec-
tion 3.2).

4. Facilitating management of events and metadata.
Cascadia stores all detected events in an RDBMS
and simplifies their management with standard event-
driven and query-based APIs (Section 3.4).

A variety of access control techniques can be used to
enforce privacy in Cascadia. Our baseline privacy policy
is Physical Access Control (PAC), which allows a user to
access events that occurred only when and where she was
physically present. Users may extend PAC with additional
context-dependent access control policies. We refer the
reader to our prior work for details [38, 47].

Overall, Cascadia is intended to support user-oriented
pervasive computing applications with services for event
specification, notification, and near real-time detection on
top of an existing RFID infrastructure within a single ad-
ministrative domain. In this paper, we present the design,
implementation, and evaluation of Cascadia. We demon-
strate Cascadia’s practicality with results from experiments
on (1) the usability of Cascadia’s graphical interface, (2) the
precision and recall for event detection, and (3) measure-
ments of latency for event notification. All measurements
were made on real traces collected in our building-wide
RFID deployment [53, 56]. To demonstrate how Cascadia
facilitates application development, we build the digital di-
ary application mentioned above.

We present Cascadia’s data model in Section 2 and de-
scribe its architecture in Section 3. We mention important
implementation details in Section 4 before describing the
digital diary application in Section 5. Finally, we present
an evaluation of Cascadia in Section 6, related work in Sec-
tion 7, and conclude in Section 8.

2. Cascadia Data Model

In this section we present Cascadia’s data model, which
comprises a location model, an entity model, and an event
model. The data model abstracts away the many technical
details and difficulties of an RFID deployment to present
applications with data in a form that is easier to work with.
The location model hides the details of the RFID infrastruc-
ture while capturing an abstract notion of tag location and
movement. The entity model allows applications to work
with meaningful entities (e.g. people, places, things). Fi-
nally, the event model defines how entity movements and
relationships can map to high-level events and how these
events are represented.

2.1. Location Model

Reasoning about location and movement using raw
RFID data is challenging for two reasons. First, RFID an-
tennas often fail to detect tags in their vicinity [16, 30].
Second, due to budgetary constraints or lack of foresight,
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Location Model
At(time,tagID,loc,prob)

Event Model
EventType(time,a1,. . .,an,prob)

Entity Model
People(tagID,name)
Things(tagID,name,owner)
Places(name,coordinates)
Relations encoding entity lattice

Event Primitives and Operators
with and without
inside and outside
near and far
AND, LASTS, and SEQ
- Conjunctions, Duration, and Sequence

Table 1. Cascadia data model.
a deployment may not have antennas in all locations of in-
terest. These two issues make it impossible for applications
to define events on raw RFID data. We address this problem
with a probabilistic model of tag location over time that de-
couples raw RFID data from the application-level view of it.
The model must be probabilistic to account for missing sen-
sor information. For example, in our deployment antennas
are positioned solely in hallways, leaving us with no sensor
data to affirm that a tag has entered a particular room - in-
stead this must be inferred with some uncertainty. Location
must be similarly inferred when an antenna fails to detect
a nearby tag. This situation is common to most pervasive
computing and sensor systems [14].

Cascadia’s location model is embodied by the At rela-
tion which has the schema: At(time,tagID,loc,prob).
Here, the location attribute contains not an antenna iden-
tifier but a value that is meaningful to applications,
which we call a place [25]. For example, the tuple
(1:10pm,10,room230,0.75) indicates that at 1:10pm,
the tag with ID 10 was located in room 230 with prob-
ability 0.75. For each unique (tagID,time) combi-
nation, At stores the probability distribution over the
tag’s place at the given time. Thus, for (10,1:10pm),
the system may store the tuple above but also the tuple
(1:10pm,10,room231,0.25), indicating that there was
also a 0.25 probability the tag was in the adjacent room 231.

Logical views are as old as databases and have been ap-
plied to a variety of domains, including models [13]. Cas-
cadia’s contribution is to adopt and support a model that (1)
abstracts away the details of missing sensor data but (2) is
sufficiently low-level so as to not restrict the types of event
an application can define on the data.

2.2. Entity Model
User-oriented applications need to reason about mean-

ingful entities, not RFID tags. As such, we model peo-
ple, things, and places as relations People, Things, and
Places with pre-defined attributes (see Table 1). We also
distinguish mobile entities, which include people and ob-
jects from static entities which are places.

Cascadia also allows applications to organize entities
into a hierarchy (or lattice) with varying levels of abstrac-
tion. For example, a person, “Ana”, can also be a member
of a group, such as “student”. The student group can in turn
be part of a larger group such as “person”, and so on (hier-
archies for things and places are similar). The entity model

Event % of Apps
1) X enters the proximity of an entity 36%
2) X enters a place 21%
3) X leaves the proximity of an entity 17%
5) Object is next to/touching object 14%
6) X leaves a place 11%
7) X stays in proximity of a entity 9%
8) X stays at a place 6%
9) X is not in a place 2%

10) X and Y move to distance D apart 2%

Table 2. The most common RFID events ranked by
frequency of use in the literature.

allows applications to specify this type of hierarchy at run-
time by adding separate relations. For example, a relation
Role might map RFID tag numbers to groups identifying
students, staff, and faculty. A relation TypeWorker could
further group students and faculty as “flexible-schedule”
workers, and staff as “fixed-schedule” workers.

2.3. Event Model
Events are at the heart of Cascadia and the services it

provides. As such, the event model must be optimized to
support the specification, extraction, and management of
common RFID-based events. The model must also be prob-
abilistic so that developers and users can decide how to han-
dle uncertainty in events.

To better understand the type and structure of common
RFID events we surveyed over 100 papers from past Ubi-
comp conferences. For each application scenario we stud-
ied the use of any meaningful events that were or could
be extracted from RFID data. We consider an event to be
meaningful if it could be understood and directly valued by
average users: e.g., Ana entering a room is meaningful but
a recent Fourier transform of a sensor signal is not.

We further categorize events as complex or simple. Com-
plex events are complex relationships among two or more
subjects (e.g., “Ana takes a coffee break”) and can be de-
composed into simpler meaningful events (e.g., “Ana left
her office, is in the kitchen and has her mug”). Simple
events involve two subjects in some basic relation and can-
not be further decomposed. RFID offers two types of sim-
ple event: location (e.g., “X is at location L”) and proximity
(e.g., “X and Y are proximate”). We noted all uses of com-
plex and simple events, we also recursively decomposed all
complex events into simple events, noting one use for each
sub-event. We then clustered all events into groups of simi-
lar events and counted the number of events in each cluster.
Table 2 shows the most common events along with the frac-
tion of applications in which they were used.

From Table 2 we abstract six event primitives defined as:
(1) with and without: some mobile entities are next to or
touching each other or not. (2) inside and outside: some
mobile entities are inside or outside a place. (3) near and
far: some mobile entities are within or beyond a given dis-
tance of each other or of a particular place. Each primitive
defines a point event which occurs at a single point in time.
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The analysis of events in the survey also showed that
events are typically composed in three ways: conjunction,
duration, and sequencing. Conjunction combines events
which occur nearly simultaneously into a more complex
event. Duration can be used to extend an event primi-
tive in time, for example: “Ying stays in the lab for 10
minutes”. Finally, sequencing composes events as a se-
quence in time. As an alternative to these methods, machine
learning techniques have been used to derive higher-level
events [43, 44]. However, as we discuss in Section 7, these
techniques are typically specialized for identifying events
that are pre-defined by a model or by labeled data.

Cascadia’s event model is thus implemented on top of
the entity relations, the base events in the At relation, and
using the six event primitives and three operators (conjunc-
tion, sequencing, and duration) defined above. In addition,
all events have a probability that represents the uncertainty
which comes from the At relation and propagates to higher-
level events. For example, low probability ENTERED-ROOM

events could be composed to form a START-STUDYING

event with accordingly lower probability. Events are stored
in relations that bear the event’s name and which can be
queried using the Cascadia API. All events have a times-
tamp that marks the time when the event ended. For ex-
ample, Ana’s START-STUDYING event might be stored in a
table with schema START-STUDYING (time, person1,

person2, room, prob). An example tuple is (1:10pm,
Ana, Bill, room605, 0.4), which represents Casca-
dia’s belief that Ana and Bill are having a study session at
1:10 pm with probability 0.4.

Currently, we adopt point semantics for time; the de-
tails of interval semantics (e.g., ordering and overlap of
events) are much more complicated to support. With point
semantics, the time of the last point event in a sequence
defines the time of the event, making event ordering easy.
It is important to note that the time of each point event in
a sequence can be exposed as an attribute of the higher-
level event. For example, a Meeting can be defined as a
Meeting-Started followed by a Meeting-Ended. The
Meeting-Started event exposes the start time, is de-
fined as two people entering a room, and occurs when
the second person enters. The Meeting-Ended event ex-
poses the end time and occurs when one person leaves the
room. However, in the remainder of this paper we use an
alternate definition of Meeting which consists of only a
Meeting-Started event.

3. Cascadia Architecture

In this section, we present Cascadia’s system architec-
ture (see Figure 1). At the lowest level, Cascadia receives
and stores raw RFID data from a network of RFID readers.
The TREs are processed with a particle filter to populate the
At relation with smoothed, probabilistic location events.

Figure 1. Cascadia system architecture.

Figure 2. A particle filter’s sample-based representa-
tion of the distribution over a single tag’s place at two
timesteps. (a) Antenna A detects the tag, creating a fo-
cused distribution. (b) No antennas detect the tag, cre-
ating a distribution with more uncertainty.

This base data is then processed by the Probabilistic Event
EXtractor (PEEX), which continuously extracts and stores
higher-level events. Above PEEX is the Event Manager,
which is responsible for managing event definitions, sub-
scriptions, and notifications as well as for executing queries
on behalf of applications. Subscription and query services
are exposed to applications with an API that supports both
declarative queries and event-driven programming. Finally,
Cascadia further simplifies the process of event specifica-
tion with Scenic, a user-level tool that assists non-experts in
specifying common higher-level events. We present each of
these components in detail below.

3.1. Particle Filter

As discussed in 2.1, the exact location of a tag in an
RFID system is low-level and uncertain. The At relation
thus gives the location of a tag, x, at each timestep, t, as a
distribution over x’s possible place at t. To populate the At
relation using RFID data requires (1) a definition of place
and (2) a method for inferring distributions over place. We
discuss our approach to these requirements below.

3.1.1 Defining Place

In Cascadia, the space within a building is discretized into
places by an administrator (using mechanisms described in
Section 3.4.1). In our experiments, each room is a place and
hallways are sliced into non-uniform segments based upon
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the adjoining doorways. Places can have varying size, ours
are all at least several square feet in size.

3.1.2 Inferring Location

To infer place distributions from RFID readings, Cascadia
uses a particle filter [17]. Particle filtering is a standard tech-
nique for inferring a “hidden” state (e.g., the location of a
tag) from observations (e.g., TREs). This technique lends
itself well to the asymmetric, multi-modal distributions typ-
ical of location estimates. While our use of particle filtering
is not a research contribution, we describe the process be-
low for completeness.

A particle filter represents the distribution over a tag’s
possible place with a set of samples, or particles, such that
more likely places are associated with more samples. Each
particle is associated with a specific position (i.e.location
coordinate tuple) within a place. During updates, particles
move along the edges of a connectivity graph (also defined
by an administrator) that connects these positions. For the
purposes of event detection, however, only the containing
places (not the positions or graph edges) are considered.

To update its estimate of a tag’s place as time progresses,
the particle filter first moves each particle forward accord-
ing to a motion model. Cascadia’s default motion model
(used in our experiments) moves particles straight down
hallways at roughly 1.0 meter/second, and chooses direction
uniformly at intersections (doorways are considered inter-
sections). The set of moved particles captures the updated
distribution over the tag’s place. Upon receiving a TRE, the
particle filter re-weights the particles using a sensor model:
particles having coordinates consistent with the TRE are
given higher weights than those with inconsistent coordi-
nates. The default sensor model (used in our experiments)
assigns a fixed, high weight (e.g. .8) to particles within the
read range of the detecting antenna2 and a low weight (e.g.
.01) to particles beyond this range. After re-weighting, a
new set of uniformly-weighted particles is produced from
the weighted set using importance sampling with replace-
ment, and the process repeats. The default motion and sen-
sor models can be tweaked or replaced by an administrator.

This update process is concretely depicted in Figure 2.
In the first timestep, (a), antenna A detects the tag. Particles
close to A get high weights and are more likely to be re-
sampled, producing a distribution that is fairly concentrated
around A: i.e., the tag’s place is fairly certain at that time (in
the figure, hallway H1 has roughly 0.85 probability). In the
next timestep, (b), no antennas detect the tag. Without any
sensor input, the particle filter cannot determine whether the
tag entered an office or whether it perhaps remained in the
hallway and simply was missed by the readers. The par-
ticle distribution reflects this ambiguity–it is more diffuse
and covers a larger set of places than the distribution in (a).

2An antenna’s read range is about nine feet in our RFID deployment.

These particles will continue to disperse with each timestep
until another TRE re-focuses the distribution. It is impor-
tant to note that when another TRE finally occurs, particles
within range of the antenna will be more heavily weighted
and hence probably resampled, causing many particles with
non-viable location coordinates to disappear. However, the
particle filter does not “teleport” to the coordinates of the
TRE any particles that were not already there.

The At relation is populated at each timestep using the
corresponding set of particles: each place P containing at
least one particle produces a new At tuple for P with a
prob that is the sum of the particle weights inside that
place. An important consequence of this construction is that
when a particle distribution is diffuse, as in Figure 2(b), the
probabilities of all At tuples for this timestep–including the
correct one–are low because the probability mass is spread
across many places. Thus low absolute probabilities can
still identify meaningful events. As an example consider
a distribution in which place P1 has probability .2 and all
other places have probability .01. This distribution suggests
that it is twenty times more likely that the tag is in P1 than
anywhere else. In contrast, a distribution where P1 and P2

both have probability .5 actually has less certainty about the
tag’s place, despite the high absolute probability values.

Finally, we note that particle filters generally produce
distributions in which a small number (1-3) of places have
significant probability (e.g.> .2), while all remaining places
have diminutive probabilities (e.g.< .01).

3.2. PEEX

PEEX [36, 37] is Cascadia’s event detection subsystem.
It takes declarative event specifications as input and contin-
uously extracts the specified events from base data in the At
relation. For example, in our calendar application, PEEX
takes specifications for events like Meeting and extracts
the events while the particle filter populates the At relation.

3.2.1. PeexL Query Language

PeexL is a declarative query language for specifying high-
level probabilistic events for PEEX. Event specifications in
PeexL have the form:

FORALL I1, I2,..., In

[ CTABLE C ]

WHERE Condition

CREATE EVENT E

SET Assignments

The arguments to the FORALL clause, I1, . . ., In, cor-
respond to At events, other composite events, or to regular
database tables and may optionally be preceded by a nega-
tion !. The CTABLE clause specifies an optional, developer-
defined confidence table, which helps in handling ambiguity
as we discuss in the following section. The WHERE clause
is as in SQL with the addition of the SEQ predicate which
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1 FORALL At A1, At A2, At A3, At A4
2 CTABLE MeetingStats C
3 WHERE SEQ(AND(A1, A2), AND(A3, A4))
4 AND A1.tag = ’Bill’ AND A2.tag = ’Ana’
5 AND A1.loc <> ’DB Lab’ AND A2.loc <> ’DB Lab’
6 AND A3.tag = ’Bill’ AND A4.tag = ’Ana’
7 AND A3.loc = ’DB Lab’ AND A4.loc = ’DB Lab’
8 AND C.person1= A1.tag AND C.person2= A2.tag AND
9 AND C.room = A3.loc
10 CREATE EVENT MEETING E
11 SET E.person1 = A1.tag,
12 E.person2 = A2.tag,
13 E.room = A3.loc;

Figure 3. Meeting Event in PeexL

we borrow from [6, 58]. SEQ(I1, I2, . . ., Im) states
that Ij.time ≤ Ij+1.time for j ∈ [1,m − 1]. One can
also specify that an argument to the SEQ operator LASTS
for a specified time. Finally, the CREATE EVENT and SET

clauses define the name and the attributes of the new event.
Figure 3 illustrates a PeexL query that extracts MEETING

events. This query specifies that if Ana and Bill are outside
the database lab (lines 4-5), and then they are inside the
database lab (lines 6-7), then they may be having a meeting
in the database lab (lines 10-13). The ordering of events
is determined by the SEQ construct (line 3) which specifies
that both Ana and Bill are outside and then inside. The
CTABLE clause specifies the confidence table for the event.

3.2.2. PEEX Event Detector

Event extraction in PEEX is performed by an Event Detec-
tor that runs periodically. Like base events in the At rela-
tion, all extracted events are stored persistently using one
relation per event specification. The Event Detector assigns
a probability to each newly detected event before storing it
in the appropriate relation.

The Event Detector operates with two time windows.
The first window, ∆, is a longer window (e.g., about one day
worth of data). It bounds the time range in which the Event
Detector searches for events to ensure constant performance
in face of a growing data archive. ∆ should be small enough
to ensure good system performance while still covering the
most common types of events (Table 2). The second win-
dow, δ, specifies the frequency at which the Event Detector
executes. δ determines the latency of event detection but
does not affect what events are being detected. Both time
windows are set by an administrator.

Extracting Events. During event extraction, the Event
Detector leverages the underlying RDBMS where events
are stored. To do so, it transforms PeexL event definitions
into SQL queries that it executes every δ seconds. There are
six key parts to this transformation. (1) All SEQ(I1, I2,..)

constructs are transformed into explicit predicates on in-
put event timestamps. (2) LASTS predicates are translated
into count sub-queries. For example, if an underlying event
must last for 10 seconds, the translated SQL specifies that
the event must occur once, then again ten seconds later,

and also at the eight distinct timesteps in between (thus the
count is 10). (3) Negations are re-written into outer-joins,
which join two relations but include tuples without matches
in the result. (4) To avoid repeatedly detecting the same
events on successive runs, the Event Detector transforms
event definitions into stateful, incremental queries. These
queries only retrieve combinations of low-level events in
which at least one has occurred in the most recent δ win-
dow. (5) Additionally, the Event Detector inserts a predicate
stating that all the underlying events must occur within the
larger time window (∆ seconds). (6) Finally, the generated
SQL includes a calculation that computes the probability of
the event as a function of the probabilities of the events on
which it depends as well as the appropriate probability from
the corresponding confidence table.

Computing Event Probabilities. The intuition behind
confidence tables is that many higher-level events are cor-
related with the attributes of underlying lower-level events.
For example, it may be that when Ana and Bill are outside
the lab and then inside the lab, they usually start a meet-
ing. In contrast, when Ana and Ying enter the lab, it may be
more likely that they are simply crossing paths. Confidence
tables help capture such correlations. They take the form:
CONF TABLE(A1,A2,...,An,comb-prob,prob).

If confidence tables are to be used, a developer or an ad-
ministrator must populate them by providing PEEX with
training data. In this case, training data amounts to At
traces that are labeled with complex events. The At traces
in this data are probabilistic while the labels are determin-
istic (i.e., have probability 1).

Confidence tables aim to capture the probability that a
complex event occurs given that the underlying event com-
bination occurs with some probability (e.g., the probability
that a specific Meeting event occurs given that the under-
lying At event combination occurs with probability 0.2.)
For example, consider the Meeting event combination i.e.,
four At events, two indicating that Ana and Bill are out-
side a room followed by two indicating they are both inside
the room. If PEEX learns that out of all the times where
this combination of At events occurs with probability 0.2,
then the Meeting event also occurs 90% of the time, then
it will append to the confidence table the tuple (’Ana’,

’Bill’, ’DB Lab’, 0.2, 0.9). This rule in the confi-
dence table says that if PEEX sees this combination of At
events for ’Ana’ and ’Bill’ with probability 0.2, then it must
generate the Meeting event with probability 0.9.

The confidence table used in Figure 3 has schema
MeetingStats(person1,person2,room,comb-prob,

prob). It maps each (person1, person2, room,

comb-prob) tuple to the probability that person1 and
person2 are indeed having a meeting in room given that
the probability they were seen outside and then inside the
room is comb-prob.
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One can think of the confidence table as a set of func-
tions. There is a function for each (person1, person2,

room) tuple, which maps comp-prob (the probability of
the underlying event combination) to prob (the probabil-
ity that the composite event occurs). Let’s call this function
f(person1,person2,room). In practice, it is impossible to learn
these functions precisely, especially with a small amount of
training data. As such, PEEX assumes that the functions
are linear and it only learns the gradient for each function.
PEEX can also use the gradient to easily calculate the prob-
ability of a complex event - it simply multiplies the proba-
bility of the underlying event combination by the gradient
value found in the estimated confidence table. PEEX could
use any method for estimating the gradient of the function
given some training data. In our experiments, we take the
slope of the line going through the origin and the centroid
of the training data points as the gradient for the function.

As an example, consider the rule above: 90% of the
time when PEEX sees the four-At-events combination with
probability 0.2 for ’Ana’ and ’Bill’, they are indeed having
a meeting. If this is the only rule PEEX learns for ’Ana’ and
’Bill’, the learned gradient will be 4.5. However, if PEEX
sees the underlying event combination in the testing data
with probability 0.1, then it will produce a Meeting event
for ’Ana’ and ’Bill’ with probability 0.1 ∗ 4.5 = 0.45. Our
linearity assumption means that the result of this calcula-
tion can be greater than 1. If this is the case, PEEX assigns
probability 1 to the extracted event.

The attributes of a confidence table are defined by the
developer or administrator who creates it. For example, an
administrator may assert that the probability of a Meeting
event never depends on which people enter the lab but
instead only on the lab and the time of day at which
they enter it. To do this, the administrator would spec-
ify a confidence table with schema MeetingStats(room,
time-of-day, comb-prob, prob) and alter the event
specification to indicate which attributes of the underlying
event combination match which attributes of the confidence
table. Another interesting attribute that could be used in
a confidence table is the duration between the underlying
events. For example, when defining the Meeting-Ended

event (described in Section 2.3), the confidence table can in-
clude the duration of the meeting (i.e., difference in time be-
tween the Meeting-Started event and the time at which
the first person left the room).

3.3. Scenic

Authoring PeexL event specifications may be difficult
for developers and impossible for users. As such, Cascadia
provides Scenic, a tool for visual specification of events.
Scenic is primarily intended to allow end-users to quickly
and easily create or customize event specifications at run-
time. Non-expert developers can also use Scenic at design-

Figure 4. A screenshot of Scenic showing scenes, ac-
tors, primitives and a properties dialog for an actor.

time to generate PeexL for their applications. For simplic-
ity, Scenic does not allow specification of confidence tables,
this is left to developers and administrators.

Scenic uses an iconic visual language that represents
event primitives and entities as icons which can be dragged
and dropped onto a storyboard to specify a sequence of
point events, or scenes. Thus, to specify an event users
just “tell the story” of the event, scene by scene. Figure 4
shows the Scenic interface, which consists of a toolbar, be-
low which is a working area called the sequence panel.

Scenes. Scenes represent point events in a sequence and
are displayed as white panels over the grey sequence panel.
Users can compose scenes as sequences (i.e., apply the SEQ
operator) by arranging them horizontally on the sequence
panel; time is assumed to flow from left to right, with each
scene strictly following the previous one (i.e., not overlap-
ping). Scenes can be inserted and deleted with a few clicks.

Actors. Actors represent entities in a point event and
map to relations People, Things, and Places in Casca-
dia’s entity model. Scenic also supports groups of people
or things which map to higher levels in the entity lattice
(e.g., a group of four “students”). Each type of actor is dis-
played in the toolbar as a separate icon; by clicking on an
icon, users can create and drag a new actor into a scene.
Each successively created actor is represented by a differ-
ent color icon and a distinct, anonymous unique identifier
(i.e., “Person #4”). After dropping an actor into a scene a
user can right-click and set the actor’s identity as either spe-
cific (e.g., “Ana”) or general (e.g., “student”). Bounds for
the size of a group can also be set this way. The list of avail-
able identities for an actor is retrieved from the entity tables
when Scenic starts.

Primitives. Scenic provides icons for the event primi-
tives and the LASTS operator. Conjunctions (AND) are indi-
cated by dragging multiple primitives onto the same scene.
Primitives are created and used in a similar way to actors.
By dragging an event primitive onto a scene, a user can
specify a relationship between actors in that scene. The
near, far, and lasts primitives also have properties that can
be set to indicate how near or far actors must be from each
other, or how long a scene must last.
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〈EventSpec〉 ::= 〈ExtScene〉+
〈ExtScene〉 ::= 〈Scene〉 | 〈Scene〉 ’lasts’ int

〈Scene〉 ::= 〈WithEntity〉
|〈WoEntity〉
|〈MobileEntity〉 (’near’|’far’) int 〈MobileEntity〉
|〈WithEntity〉 (’in’|’out’|’near’|’far’) Loc

〈WithEntity〉 ::= 〈MobileEntity〉
|〈WithEntity〉 (’w’) 〈MobileEntity〉

〈WoEntity〉 ::= 〈MobileEntity〉 ’wo’ 〈MobileEntity〉
〈Entity〉 ::= 〈MobileEntity〉 | Loc

〈MobileEntity〉 ::= (Person)+ |Group-of-people
|(Thing)+ |Group-of-things

Figure 5. Grammar for Scenic.

(a) (b)

Figure 6. (a) In the grammar. (b) Not in the grammar.

3.3.1. Scenic Grammar

Figure 5 shows the grammar for Scenic event specifications.
Each EventSpec consists of one or more ExtScenes (ex-
tended scenes). Each ExtScene is either an instantaneous
Scene or a Scene with a duration. Scenes can be: (1) a set
of MobileEntities in the same unspecified place, (2) a
MobileEntity without another specified MobileEntity,
(3) a MobileEntity near or far from another specified
MobileEntity, or (4) a set of MobileEntities inside,
outside, near, or far from some place.

When an event is specified in Scenic, it either has exactly
one translation in the grammar or is rejected by the gram-
mar. Figure 6(a) shows an example of an event that is in the
grammar. It is parsed as shown in Figure 7. Figure 6(b) can
not be translated using the grammar because it is not clear
whether the user means ’Bill is inside the DB lab without
his umbrella’ or ’Bill’s umbrella is inside the DB lab with-
out Bill’.

3.3.2. Converting Scenic Event Specifications into PeexL

After specifying an event in Scenic, a pop-up dialog ap-
pears, prompting the user to name the new event and se-
lect its attributes from a list. This process specifies the
schema of the new event which is then sent to PEEX along
with a PeexL translation of the event specification. Table 3
illustrates the correspondence between components of the
Scenic grammar and components of a PeexL event specifi-
cation. Predicates on actor attributes are translated into SQL
predicates, possibly including a join with a relation in the
entity lattice. For example, Figure 7 is translated into PeexL
(Figure 3 without the CTABLE) as follows. First, we add an

Figure 7. Parse tree for the example meeting event.

Scenic construct PeexL construct
EventSpec SEQ operator

Scene one component in SEQ
ExtScene as Scene but with a lasts clause
with/wo AND clause (an ! for without) + loc is same
near/far using auxiliary table Loc2LocDist

in/outside check if loc is equal (or not) to a room
Person/Obj one At in the FORALL clause

Group multiple Ats in the FORALL clause

Table 3. Translation table

At relation in the FORALL clause for each Person. Sec-
ond, we add a SEQ predicate with two arguments, one for
each Scene. Because both Scenes include WithEntity,
we use the AND predicate, thus producing SEQ(AND(A1,

A2), AND(A3,A4)). Next we add a predicate for A1, A2
specifying that their location is not the ’DB Lab’, and one
for A3,A4 specifying that their location is the DB lab. Fi-
nally, we add the remaining predicates that specify the tag
for each of A1, A2, A3 and A4.

3.4. Event Manager

The Event Manager serves as the intermediary between
applications and Cascadia’s services for storage and event
detection (Figure 1).

3.4.1. Application Interface

The Event Manager’s services are exposed with a Java
API that presents entities and events as first-class objects
and supports both query-based and event-driven program-
ming models. The API’s central class is CascadiaClient,
which contains methods for creating, deleting, and querying
entities and events, and for subscribing to streams of events.
Figure 8 lists the methods in CascadiaClient.

The Person, Thing, and Place classes can be used
to create, update, or delete persistent entities. Each has a
set of attributes that match the entity model (see Table 1)
and dynamic attributes (e.g., location for a Person and
occupants for a Place) that are continuously updated
with a list of K most likely values. The API provides
addPersonGroup and similar methods to define the lattice
of entity values. For applications with admin privileges,
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// Entity methods (similar for places and things)
boolean addPerson(Person p);
boolean addPersonGroup(PersonGroup pg);
boolean removePerson(Person p);
boolean removePersonGroup(PersonGroup pg);
List<Person> listPeople();
Person getPerson(String name);
PersonGroup getPersonGroup(String name);

// SQL query interface
Query createQuery();
PreparedQuery prepareQuery(String sql);

// Event methods
RegEvent addEvent(EventDef definition);
boolean removeEvent(EventDef definition);
List<Event> getEvent(String name);
List<Event> listEvents();
EventStream subscribeEvent(Subscription subscription);
boolean unsubscribeEvent(EventStream stream);
List<Event> queryEvent(RegEvent re, long startTime,

long stopTime, double probThreshold);

// For receiving system-related events
void addListener(CascadiaListener listener);

Figure 8. List of methods in the Cascadia client API.

addLocNode and addLocEdge can be used to define the
connectivity graph (i.e., Voronoi diagram) for places.

The API also provides an SQL query interface for query-
ing entity and event relations. This interface is implemented
as a wrapper around a read-only JDBC Connection with
only the createStatement and prepareStatement

methods exposed (as createQuery and prepareQuery

respectively). Queries are currently answered using a stan-
dard RDBMS, which is sufficient for simple selections on
past events. For more sophisticated queries over probabilis-
tic events, we will eventually replace the RDBMS with a
probabilistic database such as MystiQ [10].

Events are defined and handled using a set of classes that
encapsulate event-related concepts. Figure 9 illustrates how
an application can use these classes to connect to Cascadia,
register a PeexL event definition, and subscribe to receive
specified events. In addition to the event, a subscription
also specifies a minimum probability threshold and the max
number K of most likely events the application wants to re-
ceive after each time window. To process newly detected
events, applications implement an EventHandler inter-
face. The CascadiaListener interface allows applica-
tions to receive system-level events such as the addition of
a new entity.

3.4.2. User-Specific Data and Event Templates

To facilitate management of user-specific data, the Event
Manager maintains user-specific repositories of events and
entities. All events and entities that have been defined for
a given user are stored in these tables and may be accessed
by any application authorized by that user.

Though users can define and store their own events us-
ing Scenic, many applications are developed with particular
types of events in mind. As such, the Event Manager allows

1 CascadiaClient c =
2 new CascadiaClient(user,password,host,1234);
3
4 String peexL = <definition>
5 String schema = <schema>
6 EventDef ed = new EventDef(peexL, schema,
7 "My Event", "Example Event");
8
9 RegistedEvent re = c.registerEvent(ed);
10 Subscription sub = new Subscription(re,3,0.75);
10 EventStream stream = c.subscribe(sub);
11
12 stream.addEventHandler(this);

Figure 9. A code snippet which shows event definition,
registration, subscription to an event stream, and addi-
tion of event handlers.

event templates in which all entities are variables. Users can
load event templates in Scenic to customize their specifica-
tion. For example, a developer might define an event tem-
plate, MEETING that specifies a meeting between two people
in some room. Ana may edit MEETING with Scenic to refer
to she and Bill in the DB lab. Applications store event tem-
plates in the event repository with a special template flag,
and Scenic can be invoked with a query string which indi-
cates that it should load a particular event template.

3.4.3. Event Filtering

The Event Manager filters the top-K events provided by
eventOccurred to exclude those with probability below
the subscription’s threshold. Entity objects also support
entity-based filtering. Applications can implement an en-
tity event handler (e.g., PersonEventHandler) to handle
events about a given entity. The entity object will then in-
voke the application’s entity event handler with itself and a
list of the top-K most likely events (if any) involving that
entity for the time window.

4. Cascadia Implementation
Cascadia’s Event Manager, PEEX, and Particle Filter

comprise 122 classes and over 14,000 lines of Java code, not
including comments or parser code generated by ANTLR.
We use Microsoft’s SQL Server RDBMS with the Java
JDBC API. Secure network communications are imple-
mented using Apache’s MINA framework. Scenic consists
of DHTML with about 9,000 lines of custom Javascript
code. AJAX is used to support a streamlined connection
to a Java Servlet which has 15 classes, 2,000 lines of code
and runs on the Apache Tomcat web server.

5. Example Application
To demonstrate how Cascadia can facilitate application

development, we implemented a digital diary application
which records occurrences of user and developer defined
events in a Google calendar [22]. This application could be
a useful tool for analyzing how, where, and with whom one
has spent one’s time.
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The digital diary has two components: a daemon that
continuously receives and posts newly extracted events, and
a web-based calendar that the user loads to review her diary
and edit its settings. The calendar supports three views in
which the top-1, top-2, or top-3 detected events for each
time period are displayed. The calendar also offers controls
for adding, specifying, and customizing the events for the
diary. Clicking “create new event” or “customize event”
launches Scenic as a floating tool-bar above the calendar in
the browser.

The core logic of the diary daemon uses Cascadia’s
event-driven programming interface to receive and post
newly extracted events. The daemon also implements
event-specific logic for advanced handling of developer-
defined events. For example, the diary comes with the
built-in event ENCOUNTER, for recording encounters be-
tween people, as well as pairs of MEETING-START and
MEETING-END events which record long duration meet-
ings between people. However, the diary filters out re-
dundant ENCOUNTER events that occur close in time to
MEETING-START or MEETING-END events as people gather
or disperse. An additional filtering thread which processes a
queue of recently received events is used to implement this
logic. We discuss how Cascadia facilitated the development
of the digital diary application in Section 6.3.

6. Evaluation
In this section, we present an evaluation of Cascadia’s

key components.

6.1. Scenic Evaluation

We evaluated Scenic with a laboratory study that in-
cluded 11 participants: 6 with computer science (CS) back-
grounds and 5 with non-technical or non-programming
(non-CS) backgrounds. Participants were offered $20 to
participate in a 90 minute study session. After a 10 minute
tutorial and practice period, participants were given a series
of 22 timed event specification tasks. Each task included a
general, high-level English description of an event from the
literature that participants were asked to specify as precisely
as possible. Of the tasks, 12 were simple tasks, which pre-
sented descriptions of simple events, likely to be specified
in one scene with one primitive. Another 10 were com-
plex tasks which presented descriptions of complex events,
likely to be specified with multiple scenes and primitives.
The study session concluded with a questionnaire that asked
participants to rate various aspects of Scenic on expressive-
ness, precision, and ease-of-use. Finally, we hired 2 coders
(both CS) to rate the how well each event specification from
each participant captured the original English event descrip-
tion. The coders were trained as experts with Scenic and the
basic workings of RFID systems during the first hour of a 2
hour session in which they rated every event specification.

(a) (b)

Figure 10. Min, avg, max specification times. (a) For
CS and Non-CS. (b) For increasing number of elements.

Overall, CS participants spent 93 seconds per event spec-
ification task on average, with a standard deviation of 21
seconds, while non-CS participants spent an average of 111
seconds with a standard deviation of 42 seconds. Figure 10
describes the timing results in detail. The first plot shows
that on average, participants could complete simple tasks
within 1 minute and complex tasks within 3 minutes. A few
participants took significantly longer on complex tasks. In
the second plot we clustered tasks by the number of ele-
ments in the event (i.e., number of actors + number of rela-
tions between actors). This metric directly correlates with
the number of operations (e.g., click and drag, dialog inter-
action) that must be performed to complete the specifica-
tion. As the number of elements increases, the average time
taken per event remains flat for small numbers of elements
(< 5) and afterwards increases approximately linearly with
the number of elements in the event. The maximum time,
however, may increase much more rapidly, showing again
that some participants needed to think longer about more
complex events. The slight drop in time taken for the events
with 10 and 15 elements is due to the fact that these events
were logically quite simple but involved many entities - so
they required less thought and the time was dominated by
manual operations.

Scenic received an overall average rating of 3.9 for ex-
pressiveness, 3.4 for precision, and 4.1 for ease of use on
a 5 point scale (where 5 is the most and 1 is the least).
The lowest ratings received were for precision; participants
explained that they were unsure whether the system would
correctly interpret their intended meaning for some complex
events. For example, in specifying the event “Bill prints his
meeting notes, picks them up from the printer room, and re-
turns to his office”, one participant did not specify that Bill
picked up the meeting notes in the printer room, only that
he had them after he returned. The user later expressed con-
cern about whether the system would be able to infer what
was intended. The highest ratings were for actors, showing
that participants appreciated the direct representation and
manipulation of entities. Some participants (both CS and
non-CS) really enjoyed using the prototype and even spent
extra time to neatly arrange their icons before submitting an
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event. Participants requested features to improve the usabil-
ity such as: copy-and-paste for actors and scenes and some
explicit support for representing conjunctions of simultane-
ous events. We plan to add these extensions in future work.

On average, the coders gave a rating of 6 to specifica-
tions for simple tasks and 5.5 to specifications for complex
tasks, with standard deviation under 1.5 for both on a 7 point
scale (where 7 is the most similar and 1 is the least similar).
The mode rating for specifications from each simple task
was 7. Events specifications for three of the complex tasks
had a mode rating of 6, while specifications for the other
complex tasks had mode rating of 7. Coders explained that
ratings less that 7 were assigned most often due to missing
details in the specification (e.g., exemplified in the above
example with Bill). These results show that not only could
users quickly create event specifications, but they could cre-
ate specifications which were arguably correct.

6.2. PEEX Evaluation

In order to evaluate PEEX we collected data for 1 hour
with 10 participants in our building-wide RFID deploy-
ment. Each participant had with them several tags including
their badge, keys, laptop, and mug tags. There were a total
of 44 unique tags in our trace. We collected 11585 TREs.
The Particle Filter tracked tag movements at a granularity
of 1 second using 500 particles per tag, producing a total of
16,141,789 At events. For efficiency, PEEX ran only over
At events with probability greater than 1%, of which there
were 2,303,702.

We evaluate PEEX using the ENTERED-ROOM event de-
fined as a sequence of two At events one outside a particu-
lar room and one inside that room. To collect ground truth,
we asked participants to label when they traveled between
rooms and which objects they carried with them for each
trip. We use the labeled data for the first half-hour to popu-
late confidence tables and the remainder to evaluate PEEX’
performance.

For this evaluation, we say that an extracted event E cor-
rectly captures a labeled event E′ if E is within 60 seconds
of E′. We use an approximate 60 second window to cope
with the varying degrees of inaccuracy in the labeled data.
Indeed, participants typically noted when they entered or
exited rooms either several seconds before or several sec-
onds after the event actually occurred.

We measure the recall and precision achieved by PEEX.
Recall is the fraction of labeled events that are captured by
some extracted event. Precision is the fraction of extracted
events that capture a labeled event. Figure 11 shows the
results. The x-axis shows the probability threshold, x: for
each such threshold, we measure the precision or recall only
for those events that were assigned a probability equal to or
higher than the threshold. Hence, x = 0, shows the preci-
sion and recall for all detected events, while x = 1 shows

the precision and recall only for certain events. For each
probability threshold, the graph shows the minimum, first
quartile, median, third quartile and maximum across all tags
(for the recall graph, the minimum and maximum are 0 and
1 for each threshold). More specifically, we measure recall
and precision per tag and the graph summarizes the results
across 30 out of 44 tags. The results for the remaining 14
tags were unusable. Either not even one TRE was gener-
ated for these tags or the tags failed to be detected for tens
of seconds at a time. For the most part, these abnormally
high error rates were due to tags being attached to water
bottles (water absorbs RF signals) or laptops (metal reflects
RF signals). In all cases, tags attached to participants and
most of their objects were properly detected and their re-
sults are shown in Figure 11.

As the graph shows, PEEX can achieve both a precision
and recall of up to 100% with many tags. In general, how-
ever, PEEX offers a flexible trade-off between precision and
recall unlike a deterministic approach. Indeed, there are two
possible deterministic approaches. The first deterministic
approach is to extract only events that have occurred with
certainty. In the graph, this corresponds to x = 1. The
second deterministic approach is to generate all events that
have any chance of having occurred (x = 0). PEEX can
provide a higher recall than the first deterministic approach:
the median recall improves from 29% for x = 1 to 87%
for x = 0. PEEX can also deliver higher precision than the
second deterministic approach to applications that require
it. The median precision increases from 40% for x = 0 to
96% for x = 1.

Figure 11 shows that, unlike a deterministic approach,
PEEX allows applications to choose their desired trade-off
between recall and precision by considering only events
above some probability threshold. In our example, for
x = 0.4, the recall for the third quartile is 0.75 while the
precision is 0.94. While it seems low, 0.4 is a reasonable
probability threshold for two reasons. First, higher-level
event probabilities are misleadingly low because of the mul-
tiplicative way in which they are computed. For example,
an ENTERED-ROOM event comprises two lower-level events
(outside and inside room) and will be detected with proba-
bility equal to the product of these event probabilities (e.g.,
even fairly high probabilities for the lower-level events such
as 0.63 and 0.63 or 0.8 and 0.5 will result in a probability
of 0.4 for ENTERED-ROOM). Second, recall from Section 3.1
that primitive At events can be significant even when de-
tected with only low (e.g., 0.2 or higher) probability. Taken
together, these two facts indicate that an application should
not use a particularly high probability threshold to achieve
meaningful results. Overall, Figure 11 shows that PEEX
can effectively detect events over data collected in a real
RFID deployment, providing good recall and precision in
spite of the high uncertainty in the data.
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(a) (b)

Figure 11. Recall and precision graphs for
Entered-Room events, x-axis is probability threshold.
Results show all quartiles.

Diary Component Classes Lines of code
Parsing config files and startup 8 400
Creating events and event streams 1 50
Incorporating user-defined events 1 50
Event handlers 1 25
Entity management 1 200
Event management and processing 3 300
Populating Diary with Google APIs 1 150

Table 4. Table showing the approximate break down
of code for the digital diary application.

In addition to measuring recall and precision for differ-
ent probability thresholds we also measured them for differ-
ent values of k, in a top-K approach. Here, for each time
window, we keep only the top K events (ordered by proba-
bility). However, the graph is almost identical to Figure 11
and we omit it. The top-K approach does not have a signif-
icant benefit in our experiments because there was little am-
biguity in event definitions. Participants entered rooms that
were far apart from each other; they never entered a room
with many adjacent rooms which would cause ambiguous
event detections. The main source of ambiguity came from
the fact that participants sometimes entered rooms and other
times simply passed in front of them. In this case, the top-
K approach does not help. In other deployments, however,
we expect the combination of top-K and threshold to yield
almost the same recall for a better precision than using a
threshold alone.

6.3. Application Development

The digital diary implementation shows how Cascadia
can greatly simplify application logic in RFID event-based
applications. The diary took only 3 days to develop and
consists of about 1,200 lines of Java code in 12 classes. The
code break down is presented in Table 4. As shown in the
table, the bulk of the application logic dealt with the filtering
of Cascadia events (i.e., event management).

6.4. System Performance

We characterize Cascadia’s performance by measuring
the latency introduced by the Particle Filter, PEEX, and the
Event Manager while extracting ENTERED-ROOM events

from the 1 hour trace. Each component was run on a Dual
Xeon 3GHz server with 8GB of RAM and 700GB of disk.

The time taken by the Particle Filter per timestep de-
pended on the number of tags being tracked. We found
that the Particle Filter could maintain real-time performance
(one update per second) for at least 175 tags (using 500 par-
ticles each). In measuring the performance of PEEX, we as-
sumed that the At events table, along with any other helper
tables, had an index on time and tagID. PEEX took a to-
tal of 77.5 s to learn the confidences over the 2,303,700 At

events, and an average of 48 ms per 5 s time window to ex-
tract the ENTERED-ROOM events. Finally, the Event Man-
ager took an average of 2.69 ms to retrieve and send each
event stream update to a remote application. From these re-
sults we conclude that Cascadia can easily run in near real-
time for hundreds of users. Additionally, the system could
scale even more with parallelization and a few additional
servers.

Finally, we note that while we currently store a set of
At tuples for every tag and every timestep, compression or
pruning can easily be applied to reduce storage demands.
Most simply, At tuples (or detected events) can be com-
pressed or deleted after an expiration window (say, 48 hours
for At tuples and 1 month for detected events). More so-
phisticated techniques might compress or prune the data to
reduce its size while maintaining a majority of the informa-
tion (e.g. the At tuples over a long interval during which a
tag does not move might be compressed into a single distri-
bution).

7. Related Work

Related work for Cascadia spans a variety of areas.
Infrastructures for pervasive computing. Many sys-

tems have been built to provide event services for perva-
sive computing. Many of these systems, such as the Con-
text Toolkit [51], Gaia [50], Aura [52], Solar [7], and Con-
Fab [26] have sought to address issues in addition to event
services such as discovery, allocation, and management
of resources, potentially heterogeneous sensors, and dis-
tributed computing. By contrast, Cascadia only uses RFID
data and assumes that an infrastructure for aggregating and
centrally storing that data is readily available (as would be
the case in a hospital, corporate campus, or smart home).
Furthermore, none of these systems has focused on pro-
viding Cascadia’s combination of user and developer-level
support for expressive, declarative event specification, sub-
scription, notification and management on top of a proba-
bilistic data model that targets pervasive computing.

The ParcTab [55], Sentient Computing [2], Event
Heap [33], and ConFab systems all proposed data models
similar to Cascadia’s, yet they did not support uncertain
base data and streams of probabilistic events. JCAF [5] pre-
sented an event-driven programming API with event sub-
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scriptions which is very similar to ours, but requires that de-
velopers write custom modules to perform event detection.
ParcTab, Stick-e Notes [42], and ConFab provide declara-
tive event specification languages, but they are less expres-
sive and do not leverage RDBMSs. Liquid [24] and the Data
Furnace project [19] have provided declarative, expressive
event specification languages. Moreover, the Data Furnace
project seeks to manage imprecise sensor data and proba-
bilistic events. However, to the best of our knowledge, no
algorithmic or system implementation details are published
for either system.

RFID data management. Several techniques for com-
pactly representing, summarizing, and efficiently accessing
RFID data have been proposed [21, 27]. Most similar to
our approach is the Siemens RFID middleware [54], an in-
tegrated data management system that includes a rule-based
framework to transform RFID observations into business
logic. This system is intended for supply-chain manage-
ment and hence features a data model that emphasizes con-
tainment relations (e.g., tagged cases are inside pallets). Ad-
ditionally, the rules used are deterministic and operate on
raw RFID readings.

Event specification. Early applications such as Con-
textual Reminders for ParcTab, and the more recent
SPECs [39] allow expert end-users to write simple, declar-
ative rules to trigger a particular application behavior. This
type of specification is infeasible for non-expert users who
are not equipped to reason about the structure and logic of
rules and triggers. The Solar system provides a visual in-
terface for specifying events, but it requires a knowledge of
both the system architecture and the available sensor pro-
cessing modules. Most similar to Cascadia’s Scenic tool is
the EventManager [40], which allows end-users to declar-
atively specify events using a forms-based interface. Yet
Scenic supports a larger set of events by allowing sequences
and also supports translation into a sophisticated event de-
tection language.

Event detection. Event detection and processing has
previously been addressed in three main research areas:
active databases [1, 3, 6, 20, 45], publish-subscribe sys-
tems [12, 32], and more recently complex event extraction
from sensor and RFID data [15, 49, 58]. In all these sys-
tems, however, event detection is deterministic: these ap-
proaches ignore event ambiguity and possible input data er-
rors.

Activity inference. Previous work [43, 44] proposed
dynamic Bayesian networks for inferring human activities
from RFID and other sensor data. These systems infer the
most likely activity performed by the user and defined by
the model. We investigate an alternative technique that al-
lows users to define new events at runtime and where the
system reports the entire set of possible activities.

Sensor and RFID data cleaning. Several techniques

for cleaning sensor data have been proposed. In these tech-
niques, users declaratively specify either the data cleaning
algorithm [30, 18] or a pattern over the data with match-
ing cleaning actions [46, 54]. In contrast, our system oper-
ates directly on the dirty data, with no requirement for user-
specified cleaning mechanisms. Cascadia, however, can
leverage simple low-level cleaning techniques that average
measurements within a short time-window [31] and across
a group of sensors covering the same area [30]. In previous
work [35], we showed that integrity constraints can serve to
clean sensor data probabilistically. This technique can also
be integrated with Cascadia to improve performance.

Probabilistic databases. There has been much work
in this area [4], with our probabilistic events most sim-
ilar to maybe-or tuples in Trio [57], pc-tables in Green
and Tannen [23], or disjoint-independent tuples in Dalvi
et al., [10]. Query complexity on such databases has been
studied in [10, 9]. Probabilistic temporal databases have
been introduced [11], but they use a semantics based on
probability intervals, which is different from ours. Recent
work has explored query processing over probabilistic data
streams [8, 28, 29], which could come from a model such as
an HMM or particle filter [34]. These systems focus on se-
lections and aggregation queries, while Cascadia supports
a more natural set of operators for defining RFID events:
selections, sequences, and negations.

8. Conclusion

In this paper, we presented Cascadia, an infrastructure
for the specification, detection, and management of RFID
events in pervasive computing applications. Cascadia pro-
vides applications with a probabilistic model of RFID data.
Cascadia enables developers and users to visually specify
events using Scenic. It detects these events continuously
using PEEX and provides a convenient API for further man-
aging the detected events and the related entities.

We showed that our approach is practical. Users can eas-
ily and effectively express common events with Scenic. The
Particle Filter efficiently smoothes dirty RFID data. PEEX
achieves good recall and precision on extracted events and
allows applications to choose the trade-off between recall
and precision. The digital diary application took just a few
days to build. Additionally, performance results demon-
strate that our current prototype can easily run in near real-
time for hundreds of tags. In future work, we plan to further
enhance the functionality and usability of Scenic, the event
detection performance of PEEX, and the overall system per-
formance.
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