
87DECEMBER 2009

INVISIBLE COMPUTING

Published by the IEEE Computer Society0018-9162/09/$26.00 © 2009 IEEE	

Beyond Pinch and Flick:
Enriching Mobile Gesture
Interaction

D uring the past two
decades, human-com-
puter interaction has
been dominated by the

WIMP (window, icon, menu, pointer)
paradigm. Though powerful, the
interaction based on this paradigm
requires much of a user’s attention
and can be slow to perform and hard
to learn.

WIMP-based interaction is partic-
ularly problematic and awkward on
mobile phones, which have a small
form factor and are primarily used
on the go. Mobile phone users want to
be able to continue focusing on real-
world tasks at hand rather than have
to carefully key in commands, tap
buttons, and navigate through menus.

Touchscreen gestures can provide
a quicker, more intuitive way to oper-
ate a mobile phone.

Gestures have always played an
important role in human commu-
nication (A. Kendon, Gesture: Visible
Action as Utterance, Cambridge Univ.
Press, 2004). They allow us to express
a variety of feelings and thoughts that
might be difficult or time-consuming
to do verbally. Gestures also serve as
an important visual complement to
verbal communication. A thumbs up
or down, for example, is a common
gesture for appraisal.

Touchscreen technology, a major
driver for the rapid growth of smart
phones, not only lets a user view
rich content such as high-resolution
graphics or movies, it also enables
gesture interaction. A user makes
a gesture by sliding a finger on the
touchscreen, and the resulting path
can express numerous operations.

For example, pinch and flick are
two representative gestures used
by touchscreen phones such as the
Apple iPhone: A user can pinch two
fingers to zoom into or out of, say, a
map, or scroll a list vertically by rap-
idly flicking a finger.

However, existing mobile phones
support only a handful of built-in
gestures. Touchscreen gesture-based
interaction is thus a rich area to
explore.

GESTURE Toolkit
As in human communication,

touchscreen gestures can vary
according to cultures and application
domains. They can also be unique for
individual users based on their expe-
riences and preferences. For example,
a user might draw a star-shaped ges-
ture to call his wife, while another
might draw the letter W to do so.

To unleash the power and richness
of touchscreen gestures, developers

and end users must be able to create
their own gestures. To this end, my
team at Google has developed an
open source toolkit (http://developer.
android.com/intl/en/sdk/index.html)
that makes it easy to create mobile
gesture applications.

The gesture toolkit is designed to
address two major challenges.

First, gesture-based interaction
requires a different mechanism
for event dispatching and process-
ing than WIMP-dominated mobile
interfaces. A gesture may consist of
more than one stroke, and a stroke is
generated from a sequence of touch
movements. The toolkit encapsulates
the low-level details of gesture com-
position and rendering, and simplifies
the integration of gesture-based inter-
actions with existing mobile user
interfaces.

Second, gesture recognition
that maps ambiguous shapes or
sequences to precise, executable
commands requires sophisticated
techniques such as machine learning
that are beyond the capacity of many
application developers. The gesture
toolkit packages and delivers these
technologies in a well-defined and
developer-friendly way.

The toolkit supports the seamless
integration of gesture-based inter-

	 Yang Li, Google Research

An open source toolkit lets developers easily create mobile
gesture applications.

r12inv.indd 87 11/24/09 2:04 PM

computer	88

INVISIBLE COMPUTING

action and existing, GUI-oriented
mobile interfaces and recognizes
both built-in alphabet and user-
defined arbitrary gestures. Figure 1
shows the runtime architecture.

Gesture overlays
The gesture overlay collects touch

events, wraps sequences of move-
ments into gestures, and dispatches
these to the application. The over-
lay can be configured to accept
single-stroke or multistroke gestures;
currently, a timeout delimits multi-
stroke gestures. A gesture has a set

of properties, including a minimum
bounding box and path length that
developers can use to analyze its
overall geometric features.

As its name suggests, the gesture
overlay, shown in Figure 2, is a trans-
parent layer that a developer can stack
on top of any interface widget—for
example, a list or dial keypad. Users
can thus gesture and still be able to
manipulate the underlying interface
widgets as usual, such as scrolling a
list or tapping a button. This interac-
tion style enables a sufficiently large
gesturing area that leverages the
entire mobile phone screen, keeps
the application interface visible, and
avoids the need to explicitly activate
a gesture mode.

The gesture overlay moderates
event dispatching of the entire inter-
face. It employs a combination of
techniques to disambiguate gesture
input from regular touch input, such
as the variation of a touch movement
path, and renders touch input differ-
ently according to its confidence in
discerning gestures versus regular
touch input.

Gesture recognition
Mobile gestures can be applica-

tion- or user-dependent. For example,
gestures for navigating a map might

differ from those for controlling a
music player. In addition, users might
create unique gestures as shortcuts
for invoking their favorite applica-
tions. To address these diverse needs,
the toolkit provides one engine that
recognizes the English alphabet and
another that recognizes arbitrary
developer- or user-defined gestures.

To create a gesture recognizer for
the English alphabet, we developed
Gesture Sampler, a data collection tool
based on the Android phone. Gesture
Sampler asks users to write each of
the alphabet’s 26 letters multiple times
in random order to capture the natural
variation of each user’s writing style.

We asked a sample of users to
download Gesture Sampler and
install it on their Android phones.
Participants could finish these
data-collection tasks wherever and
whenever they chose, with the data
automatically uploaded to a server
upon completion. This approach
allowed us to collect more realistic
data than in a laboratory setting.

Using the collected data, we
trained a neural network classifier to
recognize letters independent of spe-
cific writing sequences or the number
of strokes. Although the letter recog-
nizer only recognizes a fixed set of
gestures, it does not require any train-
ing of developers or users.

In contrast to the letter recognizer,
the recognizer for arbitrarily defined
gestures must be able to quickly learn
from examples given at development
time or by an end user at runtime. The
customizable recognizer thus uses a
nearest-neighbor approach to match
an unknown gesture against a library
of known gesture examples. Each ges-
ture in the library is associated with
a meaningful name such as “search”
or “copy.” Multiple examples might
share the same name to reflect a ges-
ture’s variation.

The gesture l ibrary can be
configured to be sequence- or ori-
entation-sensitive, with accordingly
different preprocessing and classifica-
tion methods. For example, when the

Letter
recognizer

Customizable
recognizer

Gesture
overlay

Touch input

Applications
semantics

Graphical user
interfaces

Alphabet
gestures

User-
de�ned
gestures

Touch
input

Gesture toolkit

Figure 1. Gesture toolkit runtime architecture. The toolkit supports the seamless
integration of gesture-based interaction and existing, GUI-oriented mobile interfaces
and recognizes both built-in alphabet and user-defined arbitrary gestures.

Figure 2. The gesture overlay, which
collects touch events, wraps sequences
of movements into gestures, and
dispatches these to the application, is a
transparent layer that a developer can
stack on top of any interface widget.

r12inv.indd 88 11/24/09 2:04 PM

Author guidelines: www.computer.
org/software/author.htm
Further details: software@computer.org

www.computer.org/
software

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable,

useful, leading-edge information

to software developers, engineers,

and managers to help them stay

on top of rapid technology change.

Topics include requirements,

design, construction, tools, project

management, process improvement,

maintenance, testing, education and

training, quality, standards, and more.

Call
Articlesfor

89DECEMBER 2009

Editor: Bill N. Schilit, Google;
schilit@computer.org

library is sequence-sensitive, drawing
a circle clockwise or anticlockwise are
different gestures; when it is orienta-
tion-sensitive, drawing left to right is
different from drawing right to left.

Developers can easily add appli-
cation-specific gestures through a
gesture library without having to
know any details about gesture recog-
nition. They can also easily create an
application that lets users customize
their own gesture set (http://android-
developers.blogspot.com/2009/10/
gestures-on-android-16.html).

Mobile Gesture
applications

With the gesture toolkit, developers
can build various gesture-enhanced
mobile applications.

One typical use of gestures is their
serving as shortcuts to frequently
accessed contents such as contacts,
applications, or executable com-
mands in general. For example, a user
can associate a specific gesture with
an application or data item and then
bring it up by drawing the gesture,
thereby avoiding the effort of search-
ing for the item. Figure 3 illustrates a
gesture map application created using
the toolkit in which the user can, say,
draw the letter h to quickly obtain
driving directions from the current
location to home.

In addition, gestures are expressive
enough to convey various manipula-
tion semantics in applications. For
example, the shape of a gesture can
be used to represent an operation,
while the object on which the gesture
is drawn can indicate the operand. A
user could thus efficiently manipulate a
target object such as a webpage, photo,
or character in a game—say, draw a
star shape on a photo to actually star it.

Developers can also create free-
form note-taking or annotation
applications based on gestures. For
example, a user could compose a
grocery-shopping list on his phone or
annotate a picture shared by a friend
and send it back along with the ges-
ture comments. The gesture toolkit

provides basic digital-ink processing
capabilities to layout, render, and
store gesture data.

There is great potentia l
for gesture-based inter-
act ion on touchscreen

mobile phones. The open source
gesture toolkit enables develop-
ers to easily create a wide variety
of mobile gesture applications, and
provides gesture recognition com-
ponents for both built-in alphabet
and user-defined arbitrary gestures.
We continue to improve the toolkit
to provide support for even richer
gesture-based capabilities on mobile
devices.

Yang Li is a research scientist at
Google Research specializing in
human-computer interaction. Contact
him at yangli@acm.org. The author
would like to thank the Android team
for contributions to the Android ges-
ture toolkit.

Figure 3. Example mobile gesture
application. A user can quickly search
for driving directions from his current
location to home by simply drawing the
letter h on his device’s touchscreen.

r12inv.indd 89 11/24/09 2:04 PM

