
@ @ Computer Graphics, Volume 25, Number 4, July 1991

Specifying Gestures by Example

Dean Rubine
Information Technology Center
Carnegie Mellon University

Pittsburgh, PA
Dean. Rubine @cs.cmu.edu

Abstract

Gesture-based interfaces offer an alternative to traditional
keyboard, menu, and direct manipulation interfaces. The
ability to specify objects, an operation, and additional pa-
rameters with a single intuitive gesture appeals to both
novice and experienced users. Unfortunate y, gesture-based
interfaces have not been extensively researched, partly be-
cause they are difficult to create. This paper describes
GRANDMA, a toolkit for rapidly adding gestures to di-
rect manipulation interfaces. The trainable single-stroke
gesture recognize used by GRANDMA is also described.

Keywords — gesture, interaction techniques, user interface
toolkits, statistical pattern recognition

1 Introduction

Gesture, as the term is used here, refers to hand markings,
entered with a stylus or mouse, that indicate scope and com-
mands [18]. Buxton gives the example of a proofreader’s
mark for moving text [I]. A single stroke indicates the op-
eration (move text), the operand (the text to be moved), and
additional parameters (the new location of the text). The
intuitiveness and power of this gesture hints at the great
potential of gestural interfaces for improving input from
people to machines, historically the bottleneck in human-
computer interaction. Additional motivation for gestural
input is given by Rhyne [18] and Buxton [1],
A variety of gesture-based applications have been cre-

ated. Coleman implemented a text editor based on proof-
reader’s marks [3]. Minsky built a gestural interface to the
LOGO programming language [13]. A group at IBM con-
structed a spreadsheet application that combines gesture and
handwriting [18]. Buxton’s group produced a musical score

Permission to copy without fee all or part of (hismaterialis granted
providedthatthecopies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publicamm and its date appear, and notice is given that copying is by
pmnission of the Association for Computing Machinery. To copy
otherwise. or In republish, requires a fee and/or specific permission.

editor that uses gestures for entering notes [2] and more
recently a graphical editor [9]. In these gesture-based ap-
plications (and many others) the module that distinguishes
between the gestures expected by the system, known as the
gesture recognize, is hand coded. This code is usually
complicated, making the systems (and the set of gestures
accepted) difficult to create, maintain, and modify,

Creating hand-coded recognizes is difficult. This is one
reason why gestural input has not received greater atten-
tion. This paper describes how gesture recognizes may
be created automatically from example gestures, removing
the need for hand coding. The recognition technology is
incorporated into GRANDMA (Gesture Recognizes Au-
tomated in a Novel Direct Manipulation Architecture), a
toolkit that enables an implementor to create gestural inter-
faces for applications with direct manipulation (“click-and-
drag”) interfaces. In the current work, such applications
must themselves be built using GRANDMA. Hopefully,
this paper will stimulate the integration of gesture recogni-
tion into other user interface construction tools.
Very few tools have been built to aid development of

gesture-based applications. Artkit [7] provides architectural
support for gestural interfaces, but no support for creating
recognizes. Existing trainable character recognizes, such
as those built from neural networks [61 or dictionary lookup
[15], have significant shortcomings when applied to ges-
tures, due to the different requirements gesture recognition
places on a recognize. In response, Lipscomb [11] has
built a trainable recognize specialized toward gestures, as
has this author.
The recognition technology described here produces a

small, fast, and accurate recognizes, Each recognize is
rapidly trained from a small number of examples of each
gesture. Some gestures may vary in size anctlor orientation
while others depend on size and/or orientation for discrimi-
nation. Dynamic attributes (Ieft-to-righter right-to-left, fast
or slow) may be considered in classification. The gestural
attributes used for classification are generally meaningful,
and may be used as parameters to application routines.

The remainder of the paper describes various facets of
GRANDMA. GDP, a gesture-based drawing program built
using GRANDMA, is used as an example. First GDP’s

01991 ACM-O-W791-436-W9MW7W329 $OW75 329

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

(a)

1’uo-,’

,,

.

rl:!,
,,
\, c10 ““’

(b) (c)

no-
,,

El,,/0’:

(e) (f) (g) (h)

Figure 1: GDP, a gesture-based drawing program.
The figure shows a sequence of windows in a GDP session. Ges-
tures am illustrated with dotted lines, and the resulting graphics
with solid lines. The eflect of each gesture is shown in the panel
which follows it; for example panei (a) shows a rectangle gesture,
and panel (b) shows the created rectangle.

operation is sketched from the user’s point of view. Next,
the gesture designer’s use of GRANDMA to add gestures to
a click-and-drag version of GDP is described. The details of
the single-stroke gesture recognition and training algorithms
are then covered. This is followed by a brief discussion
of two extensions of the algorithms, eager recognition (in
which a gesture is recognized as soon as enough of it has
been seen to do so unambiguously) and multi-finger gesture
recognition. The paper concludes with an eye toward future
work. A more detailed treatment of the topics covered in
this paper may be found in the author’s dissertation [20].

2 GDP, an Example Gesture-based
Application

Figure 1 shows some snapshots of GDP in action. When
first started, GDP presents the user with a blank window.
Panel (a) shows the screen as a rectangle gesture is being
entered. The user begins the gesture by positioning the
mouse cursor and pressing a mouse button. The user then
draws the gesture by moving the mouse. The inking, shown
with dotted lines in the figure, disappears as soon as the
gesture is recognized.
The end of the gesture is indicated in one of two ways. If

the user simply releases the mouse button immediately after
drawing “L,” a rectangle is created, one comer of which is at

the start of the gesture (where the button was first pressed),
and the opposite comer is at the end of the gesture (where
the button was released). Another way to end the gesture is
to stop moving the mouse for a given amount of time (0.2
seconds by default), while still pressing the mouse button.
In this case, a reetangle is created with one comer at the
start of the gesture, and the opposite comer at the mouse’s
location when the timeout occurs. As long as the button is
held, that comer is dragged by the mouse, enabling the size
and shape of the rectangle to be determined interactively.
Panel (b) of Figure 1 shows the created rectangle and an

ellipse gesture,whose starting point is the center of the new
ellipse. After recognition the ellipse’s size and eccentricity y
may be interactively determined by dragging.
Panel (c) shows the created ellipse, and a line gesture.As

expected, the start of the gesture determines one endpoint
of the line, and the mouse position after the gesture has been
recognized determines the other endpoint, allowing the line
to be rubberbanded.
Panel (d) shows all three shapes being encircled by a

pack gesture. This gesture groups all the objects that it
encloses into a single composite object, which can then be
manipulated as a unit.
Panel (e) shows a COpY gesture: the composite object is

copied and the copy is then dragged by the mouse.
Panel (f) shows the rotate-scale gesture. The object is

made to rotate around the starting point of the gesture; a
point on the object is dragged by the mouse allowing the
user to interactively determine the size and orientation of
the object.
Panel (g) shows the delete gesture, essentially an “X

drawn with a single stroke. In GDP, the start of the gesture
(rather than its self-intersection point) determines the object
to be deleted.
Each GDP gesture corresponds to a high-level operation.

The class of the gesture determines the operation; attributes
of the gesture determine the operands (scope) as well as
any additional parameters. For example, the delete gesture
specifiestheobjectto be deleted,the pack gesturespecifies
the objects to be grouped, and the line gesture specifies
the endpoints of the line. Note how gesturing and direct-
manipulation are combined in a new two-phase interaction
technique: when the gesture collection phase ends, gesture
classification occurs, and the manipulation phase begins.
The gestures used in GDP are all single strokes. This

is an intentional limitation of GRANDMA, and a marked
departure from multi-stroke gesture-based systems. The
single-stroke restriction avoids the segmentation problem
of multi-stroke character recognition [21], allowing shorter
timeouts to be used. Also, the emphasis on single strokes
has led to the new two-phase interaction technique as well
as to eager recognition (both of which are potentially appli-
cable to multi-stroke gestures). Finally, with single-stroke
gestures an entire command coincides with a single phys-
ical tensing and relaxing of the user, a property thought to
contribute positively to the usability of user interfaces [1].

330

@ @ Computer Graphics, Volume 25, Number 4, July 1991

Vxew

&ipTop’:lew Graph lcObjectView~L DC=’%

-=-7@i+’e r
,:obl Text View L1neDrawlnaV1ew GobiSet View

\\ P c - /v--l r)l

Llnel’lew ?,ectdngle View ElllpseV1ew

(a) (b

Figure 2: GDP view classes and associated gesture sets (a period marks the first point of each gesture).

One obvious disadvantage is that many intuitive symbols
(e.g. “X” and “->”) are ruled out.

3 Design GDP’s Gestures with
GRANDMA

Given a click-and-drag interface to an application, the ges-
ture designer modifies the way input is handled, leaving
the output mechanisms untouched. Both the click-and-
drag interface and the application must be built using
the object-oriented toolkit GRANDMA. Figure 2a shows
GDP’s view class hierarchy, the heart of its output mech-
anism. The gesture designer must first determine which
of the view classes are to have associated gestures, and
then design a set of intuitive gestures for them. Fig-
ure 2b shows the sets of gestures associated with GDP’s
GdpTopView and GraphicOb] ectView classes. A
GdpTopV i ew object refers to the window in which GDP
runs. A Graph icObj ect View object is either a line,

rectangle, ellipse, or text object, or a set of these.
GRANDMA is a Model/View/Controller-like system [8].

In GRANDMA, a single input event handler (a “controller”
in MVC terms) may be msociated with a view class, and
thus shared between all instances of the class (including
instances of subclasses). This adds flexibility while elim-
inating a major overhead of Smalltalk MVC, where one
controller object is associated with each view object that
expects input.
The gesture designer adds gestures to GDP’s initial click-

and-dmg interface at runtime. First, a new gesture handler
is created and associated with the Graphi cOb j ec t Vi,ew

class, easily done using GRANDMA. Figure 3 shows the
gesture handler window after four gestures have been cre-
ated (using the “new class” button), and Figure 4 shows
the window in which seven examples of the delete gesture
have been entered. Empirical evidence suggests that 15
training examples per gesture class is adequate (see Section
4.5). These 15 examples should reflect any desired variance
in size and/or orientation of the gesture.

EGzil ‘es’”reHan’ler-’3PIP
start : EventKind: PickET~ent Tooli?ind: MouseTool

handle: EventKind: DragE/ent ToolKir.d: 1111

done: EventKind: DropE,.,ent ToolF’lr.d: r.il

em-m

Figure 3: Manipulating gesture handlers at runtime.
This window allows ge,stuws tobe added to or deleted,from the set

of gestures recognized by a particular view class.

El-Normai

D e l e t e

P
M

Semant Ics h

Dump

Delete ALL

P ? iQ

Figure 4: Entering examples of the delete gesture.
In this window training examples of a ge.stum=class my be udded
or deleted. The “Delete ALL” button delews all the gesture k
examples, making it easy to tn ou~ various forms of a gestuw.

33/

—

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

-=--E-B= ‘“s”

recog . [_Seq :[handler mousetool: DeleteCursor]
:[view delete]]

El

‘an’” = E@

done =- El r

Figure 5: Editing the semantics of the delete gesture.

The “Semantics” button is used to initiate editing of the
semantics of each gesture in the handler’s set, Clicking on
the button brings up a structured editing and browsing inter-
face to a simple Objective-C [4] interpreter (Figure 5). The
designer enters an expression for each of the three seman-
tic components: recog is ewduated when the gesture is
recognized (i.e. when the mouse stops moving), manip is
evaluated on subsequent mouse points, and done is evalu-

ated when the mouse button is released. The delete seman-
tics shown in the figure simply change the mouse cursor to
a delete cursor (providing feedback to the user), and then
delete the view at which the gesture was aimed. The de-
signer may now immediately try out the delete gesture,as
in Figure 1g.
The designer repeats the process to create a gesture

handler for the set of gestures associated with class
GdpTopVi ew, the view that refers to the window in which
GDP runs. This handler recognizes the line, rectangle,
and ellipse gestures (which create graphic objects), the
pack gesture (which creates a set out of the enclosed
graphic objects), the dot gesture (which repeats the last
command), the text gesture (which alfows text to be en-
tered from the keyboard), and the delete, edit, move,
rotate-scale, andcopy gestures(which are also handled by
Graph i cob j ec tVi ew’s gesture handler but when made

at a GdpTopVi ew simply change the cursor without oper-
ating directly on a graphic object).
The attributes of the gesture may be used in the gesture

semantics. For example, the semantics of the line gesture
are:

recog =

[Seq : [handler mousetool :LineCursor]

: [[view createLine]

set Endpoint :0

x:<start X> y:<startY>]];

manip = [recog set Endpoint :1

x: <current X> y: <current Y>] ;

done = nil;

The semantic expressions execute in a rich environment.
For example, v i e w is bound to the view at which the gesture
was directed (in this case a GdpTopVi. ew) and handler

is bound to the current gesture handler. Note that S eq

executes its arguments sequentially, returning the last value,
in this case the newly created line. The last value is bound
to r e c o g for later use in the man ip expression.
332

The example shows how the gesture attributes, shown in
angle brackets, are useful in the semantic expressions. The
attributes <s tart x> and < st art y>, the coordinates of
the first point in the gesture, determine one endpoint of the
line, while <currentx> and <currentY>, the mouse
coordinates, determine the other endpoint.
Other gestural attributes are useful in gesture semantics.

For example, the length of the line gesture can be used to
control the line thickness. The initial angle of the rectangle
gesture can determine the orientation of the rectangle. The
attribute < enc 1 osed>, which contains the list of views
enclosed by the gesture, is used, for example, by the pack
gesture (Figure Id).
When a gesture is made over multiple gesture-handling

views, the union of the set of gestures recognized by
each handler is used, with priority given to the top-
most view. For example, any gesture made at a GDP
Graphi cOb j ec t Vi ew is necessarily made over the
GdpTopView. A delete gesture would be handled by
the GraphicObj ectView while a line gesturewould
be handled by the GdpTopVi ew. Set union also occurs
when gestures are (conceptually) inherited via the view
class hierarchy. For example. the gesture designer might
create a new gesture handler for the Gob j Set View class
containing an unpack gesture. The set of gesturesrecog-
nized by Gobj SetViews would then consist of the un-
pack gestureaswell as the five gestures already handled by
GraphicObjectView.

Space limitations preclude an explanation of how
GRANDMA’s object-oriented user interface toolkh is used
to construct applications and their click-and-drag interfaces.
Also omitted is a discussion of GRANDMA’s internals. The
interested reader is referred to the author’s dissertation [20].

4 Statistical Single-Stroke Gesture
Recognition

This section discusses the low-level recognition of two-
dimensional, single-stroke gestures. Both the classification
and the training algorithms are short and self-contained,
making them useful for those wishing to include trainable
gesture recognition in their interfaces.
For the present, it is assumed that the start and end of the

input gesture are clearly delineated. As mentioned previ-
ously, the start of the gesture is typically indicated by the

@ @ Computer Graphics, Volume 25, Number 4, July 1991

pressing of a mouse button, while the end is indicated by
releasing the button or ceasing to move the mouse.
Each gesture is an array g of P time-stamped sample

points:

!lp = (Jpl.vp+fp) O< f) <[’

Some simple preprocessing is done to eliminate jiggle: an
input point within 3 pixels of the previous input point is
discarded.
The gesture recognition problem is stated as follows:

There is a set of (“ gesture classes, numbered O through
(“’– 1. Each class is specified by example gestures. Given
an input gesture g, determine the class to which g belongs
(i.e. the class whose members are most like g).
Statistical gesture recognition is done in two steps. First,

a vector of features, f = [~1, jp], is extracted from the
input gesture. Then, the feature vector is classified as one
of the C-’possible gestures via a linear machine.

4.1 The Features

Features were chosen according to the following criteria.
Each feature should be incrementally computable in con-
stant time per input point, which allows arbitrarily large
gestures to be handled as efficiently as small ones. Since
the classification algorithm performs poorly when a class
has a feature with a multimodal distribution, a small change
in the input should result in a correspondingly small change
in each feature. Each feature should be meaningful so that
is can be used in gesture semantics as well as for recogni-
tion. Finally, there should be enough features to provide
differentiation between all gestures that might reasonably
be expected, but, for efficiency reasons, there should not be
too many.
Figure 6 shows the actual features used, both geometri-

cally and algebraically. The features are the cosine (jl) and
the sine (J2) of the initial angle of the gesture, the length
(j~) and the angle (f4) of the bounding box diagonal, the
distance (.fs) between the first and the last point, the cosine
({~) and the sine (.fT) of the angle between the first and last
point, the total gesture length (~g), the total angle traversed
(f9), the sum of the absolute value of the angle at each
mouse point (f]()), the sum of the squared value of those
angles (fl I), the maximum speed (squared) of the gesture
(jl?), and the duration of the gesture (jl J).
An angle’s cosine and sine are used as features rather than

the angle itself to avoid a discontinuity as the angle passes
through 27r and wraps to O. The “sharpness” feature, j] j,
is needed to distinguish between smooth gestures and those
with sharp angles, e.g. “U’ and “V.” Features ~Iz and ~1~
add a dynamic component so that gestures are not simply
static pictures. Some applications may wish to disable these
two features. The initial angle features, jl and j2, are
computed from the first and third mouse point because the
result is generally less noisy than when computed from the
first two points.

,(lr)

A \ (,./, ,,,,) I

, A)=’’””’” I

j, = Cos(l = (.r~ – J’,,)/ (J2 - J-())2+ (,Y2– Yf))2

f2 = sinfi = (.Y2 -.vo)/~(12 -~0)2+(.w - yO)2

f3 = J(x777az - ‘,nin)2 + (.Ym~r - ,Yn;,,,)2

fd = arctan ! k n a r – ! / n]I71

.r,,, ar — Z,, t,r,

ff = (JP-I – ro)2 + (!/P-l – !4))2

f6 = Cos,j = (.rp-, - .r,,)/j5

f7 = sin~ = (.YP-l - ,yO)/f5

LetArp = J ’ p + l – .rI, &/,1 = !/p+ I – Yp

ArpAyp_l – Axp-l L?/,)
Let Or = arctan

Arp&’,,_ I + 3,Yp&/~/-l

p=l

P–2

Let.itp= Ip+l – tp

J13 = fP-1 – lo

Figure 6: Features used to identify strokes

333

SIGGRAPH ’91 Las Veaas. 28 JuIv-2 Auaust 1991

The aforementioned feature set was empirically deter-
mined by the author to work well on a number of different
gesture sets. Unfortunately, there are cases in which the fea-
tures fail to distinguish between obviously different gestures
(e.g. because the features take no account of the ordering
of angles in a gesture). In such cases an additional feature
may be added to discriminate between the thus far indis-
tinguishable gestures. The extensibility of the feature set
is a potential advantage that this statistical gesture recog-
nition algorithm has over most known methods for online
character recognition [21].

4.2 Gesture Classification

Given the feature vector f computed
g, the classification algorithm is quite

for an input gesture
simple and efficient.

Associated with each gesture class is a linear evaluation
function over the features. Gesture class c has weights
w ~i for O < i < F, where F is the number of features,
currently 13. (Per-gesture-class variables are written with
hatted subscripts to indicate their class.) The evaluations,
v ~, are calculated as follows:

L’,=w,o+’&,if2O<c<c (1)
i=]

The classification of gesture g is simply the c which max-
imizes v t. The possibility of rejecting g is discussed in
section 4.4.

4.3 Training

Practitioners of pattern recognition will recognize this as
the classic linear discriminator [5]. The training problem
is to determine the weights w ~i from the example gestures.
Iterative techniques were avoided to get efficient training,
Instead, a well-known closed formula is used. The formula
is known to produce optimal classifiers under certain rather
strict normality assumptions on the per-class distributionsof
feature vectors. Even though these assumptions generally
do not hold in practice, the formula still produces good
classifiers.

‘th feature of the eth example of gestureLet ~te~ be the z
class c, O ~ e < ,!7t, where Et is the number of training
examples of class c. The sample estimate of the mean
feature vector per class, ~ ~, is simply the average of the
features in the class:

7a= &‘f’ftei
e=0

The sample estimate of the covariance matrix of class c,
X ~ij, is computed as:

334 e=o

(For convenience in the next step, the usual l/(13t – 1) fac-
tor has not been included in Z ~ij.) The S ~ij are averaged
to yield Xij, an estimate of the common covariance matrix.

c–1z X ~ij

Zij =

cell
c-1 (2)

–C+~Et
C=o

The sample estimate of the common covariance matrixXij
is then inverted. The result is denoted (X – 1)ij. The weights
w ~j are computed from the estimates as follows:

A singular matrix can usually be handled by discarding a
subset of the features.

4.4 Rejection

A linear classifier will always classify a gesture g as one
of the C gesture classes. This section presents methods for
rejecting ambiguous gestures and outliers.
Intuitively, if there is a near tie for the maximum per-class

evaluation function v i the gesture is ambiguous. Given a
gesture g with feature vector f classified as class i (i.e.
vi > v~forallj# i)

P(ilg)= ~_, 1
x e(Uj-Ui)
j =0

is an estimate of the probability that g was classified cor-
rectly. Rejecting gestures in which F(i Ig) < 0.95 works
well in practice.
The Mahalanobis distance [5] can be used to determine

number of standard deviations a gesture g is away from the
mean of its chosen class i.

Rejecting gestures for which 62 > ~F’ eliminates the
obvious outliers. Unfortunately, this thresholding also tends
to reject many seemingly good gestures, making it less than
ideal.
Generally, a gesture-based system will ignore a rejected

gesture, and the user can immediately try the gesture again.
In contrast, the effect of a misclassified gesture will typi-
cally be undone before the gesture is retried. If undo is quick

@ @ ComDuter GraDhics, Volume 25, Number 4. JtJIY1991

Figure 7: GSCORE gesture set used for evaluation (a period
marks the start of each gesture).

— .—.

~ ii
/ 5 classes +--

8 classes +–

II

‘$ 11 classes -~ -

‘1 15 classes -*--
f 20 classes ~--

30 classes *- -
41
d II I I I I 1 I I I

O 10 20 30 40 50 60 70 80 90100
training examples per class

Figure 8: Recognition rate vs. training set size.

and easy, the time spent retrying the gesture will dominate.
Since rejection increases the number of gestures that need
to be redone (because inevitably some gestures that would
have been classified correctly will be rejected), rejection
should be disabled in applications with good undo facili-
ties. Of course in applications without undo, rejection is
preferable to misclassification and should be enabled.

4.5 Evaluation

Despite their simplicity, classifiers trained using this algo-
rithm usually perform quite well in practice. Performance
has been evaluated on 10 different gesture sets. Figure 8
shows some typical results for the gesture set shown in Fig-
ure 7. The gestures are from GSCORE, an editor for musical
scores. The plot shows the recognition rate as a function
of the number of training examples per class for various
subsets of the GSCORE gestures. In the cases where 15 or
fewer gesture classes are recognized by a classifier trained

with 15 or more examples per class, at least 98Yc of the
test gestures are classified correctly. The 30 class classifier
trained with 40 examples per class has a 97% recognition
rate. Recognition dropped to 96?Z0when given only 15 train-
ing examples per cktss. Many of the misclassifications can
be attributed to poor mouse tracking.
Figure 9 shows the recognition rate for five gesture sets.

Each set was trained on fifteen examples per class and eval-
uated on 50 test gestures per class. In all cases the author
was the gesturer; preliminary evaluations on other subjects
show comparable performance.
On a DEC MicroVAX H, the classifier spends 0.2 mil-

liseconds per mouse point calculating the feature vector,
and then 0.3 msec per class to do the classification (8 msec
to choose between 30 classes). Training time is 4 msec per
training example, 80 msec to compute and invert the covari-
ance matrix, and 5 msec per class to compute the weights.
The per-mouse point and per-gesture calculations are done
incrementally as the gesture is entered and thus never no-
ticed by the user. Performance improves by a factor of 12
on a DEC PMAX-3 100. in short, the classification time
is negligible and the training is fast enough to be done in
response to user input, such m the first time a gesture is
made over a particular view class.

5 Extensions

Versions of GDP utilizing eager recognition and Multi-
Finder recognition have been built by the author to demon-
strate the feasibilityy of the concepts. Unfortunate y, space
limitations preclude a thorough discussion. For more de-
tails, the reader is again referred to [20].

5.1 Eager Recognition
Eager recognition refers to the recognition of gestures as
soon as they are unambiguous. The author’s approach
[19, 20] uses the basic stroke recognition algorithm to clas-
sify subgestures (gestures in progress) as ambiguous or un-
ambiguous. Note that classification occurs on every mouse
point.
In GDP, a user presses a mouse button, enters the “L”

gesture, stops and waits for a rectangle to appear (while
still holding the button), and then manipulates one of the
rectangle’s corners. Eager recognition eliminates the stop:
the system recognizes the rectangle gesturewhile the user
is making it, and then creates the rectangle, allowing the
user to drag the comer. What begins as a gesture changes
into a rubberbanding interaction with no explicit indication
from the user.

5.2 Multi-finger recognition

Recognizing gestures made with multiple fingers simultane-
ously has recently become of interest due to the availability
of new input devices, including multi-fingertouch pads [10],

335

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

;et Name I Gesture Classes Number of
I
Recognition

Classes Rate

.— 1.
delete “insert swapA

t

Coleman ‘ &j Iyt spaceB “
spaceA ._ down 100.0%

join
move “- 11

bigdelete swapB

+

1“=”3 ‘ <“

D i g its

“ “ g .? ;’reqf:’uf:e
,0 g~,~~

six seven eight zero

“ b–
~ a =-J>.

c
a d“

e

Let :a-m “b. .

ilJ&.

f 13 99.2%

.mg
h i lk 1 m

4

fiJH ~

Let :n-z ~O.b’;~js_ 13 98.4%

u Vw x Y z

Letters Union of Let :a-m and Let :n-z 26 97.1%

Figure 9: Recognition rates for various gesture sets.

the VPL DataGlove [22], and the Sensor Frame [12]. By
treating the multi-finger input as multi-path data (e.g. the
paths of the fingertips) the single-stroke recognition algo-
rithm may be applied to each of the paths individually and
the results combined to classify the multi-path gesture. A
decision tree is used to combine the single-stroke classifi-
cations, and a set of globaJ features is used to discriminate
between different multi-path gestures whose corresponding
paths are indistinguishable.
Note that the stroke recognition cannot immediately be

applied to DataGlove finger paths, beeause the DataGlove
has no way of indicating the start of a gesture, and also
because the paths are three dimensional. This is one area
for future work.

6 Conclusion and Future Directions

This paper described GRANDMA, a tool that dramatically
reduces the effort involved in creating a gesture-based in-
terface to an application. Starting with an application with
a traditional direct manipulation interface, GRANDMA lets
the designer specify gestures by example, associate those
336

gestures with views in the interface, and specify the effeet
each gesture has on its associated views through a simple
programming interface. Since the attributes of the gesture
are available for use as parameters to application routines,
a single gesture can be very powerful.
Some parameters of application commands are best de-

termined at the time the gesture is recognized; others require
subsequent manipulation and feedback to determine. This is
the motivation behind the two-phase interaction technique
that combines gesturing and direct manipulation. After
recognition the user can manipulate additional parameters
as long as the mouse button remains pressed. Eager recogni-
tion smooths the transition from gesturing to manipulation.

The foundation of this work is a new algorithm for
recognizing single-stroke gestures specified by example.
The combination of a meaningful, extensible feature set
and well-understood statistical pattern recognition tech-
niques appears to be flexible enough to evolve beyond two-
dimensional single-stroke gesture recognition into the ges-
ture recognizes of the future. The recognition technology
is in no way dependent on the GRANDMA toolkit and its
integration into other systems is strongly encouraged.

@ @ ComDuter GraDhics, Volume 25, Number 4. JU[V 1991

Based on the experience with GRANDMA, gestures are
now being integrated into the NeXT Application Kit [16],
the Andrew Toolkit 117]. and Garnet [14]. This should
allow gestural interfaces to be added to existing applica-
tions, enabling further use and study of this promising input
technique.

Acknowledgements

I wish to thank CMU’S School of Computer Science and
CMU’S Information Technology Center for their support of
this work. I am also grateful to Roger Dannenberg and some
anonymous reviewers for their helpful criticism of an earlier
draft of this paper. Special thanks goes to Klaus Gross,
whose detailed comments greatly improved this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[81

BUXTON, W. Chunking and phrasing and the design
of human-computer dialogues. In Information Pro-
cessing 86 (North Holland, 1986), Elsevier Science
Publishers B .V.

BUXTON, W.. SNIDERMAN, R., REEVES, W., PATEL, S.,
AND BAECKER, R. The evolution of the SSSP score-
editing tools. In Foundations of Computer Music,
C. Roads and J. Strawn, Eds. MIT Press, Cambridge,
Mass., 1985, ch. 22, pp. 387–392.

COLEMAN, M. L. Text editing on a graphic display
device using hand-drawn proofreader’s symbols. In
Pertinent Concepts in Computer Graphics, Proceed-
ings of the Second Uni\’ersity of Illinois Conference
on Computer Graphics, M. Faiman and J. Nievergelt,
Eds. University of Illinois Press, Urbana, Chicago,
London, 1969, pp. 283–290.

CO~, B. J. Object Oriented Programming: An Evolu-
tionary Approach. Addison-Wesley, 1986.

DIJDA, R., AND HART, P. Pattern Classification and
Scene Analysis. Wiley Interscience, 1973.

GUYON, I., ALBRECHT, P., CUN, Y. L., DENKER, J.,

AND HUBBARD, W. Design of a neural network char-
acter recognize for a touch terminal. Pattern Recog-
nition (forthcoming).

HENRY, T., HUDSON, S., AND NEWELL, G. Integrating
gesture and snapping into a user interface toolkit. In
U~ST ’90(1990), ACM, pp. i 12-122.

KRASNER, G. E., AND POPE, S. T. A description of
the Model-View-Controller user interface paradigm in
the Smalltalk-80 system. .lournal of Object Oriented
Programming 1,3 (Aug. 1988), 26-49.

[91

[101

[111

[12]

[13]

[14]

[15]

[16]

KURTENBACH, G., AND BUXTON, W. GEdit: A test bed
for editing by contiguous gestures. To be published in
SIGCHI Bulletin, 1991.

LEE, S., BUXTON, W., AND SMITH, K. A multi-touch
three dimensional touch tablet. In Proceedings of
CHI ’85 Conference on Human Factors in Computing
Systems (1985), ACM, pp. 21-25.

LIPSCOMB, J. S. A trainable gesture recognize. Pal-
rern Recognition (1991). Also available a.. IBM Tech
Report RC 16448 (#73078).

MCAVINNEY, P. Telltale gestures. Byte /5, 7 (July
1990), 237-240.

MINSKY, M. R. Manipulating simulated objects with

real- world gestures using a force and position sensitive
screen. Computer Graphics 18, 3 (July 1984), 195–
203.

MYERS, B. A., GIUSE, D., DANNENBERG, R. B., ZAN-
DEN, B. V., KOSBIE, D,, PERVIN,E., MICKISH, A., AND

MARCHAL, P. Comprehensive support for graphical,
highly-interactive user interfaces: The Garnet user in-
terface development environment. IEEE Computer
23, 11 (NOV 1990).

NEWMAN, W., AND SPROULL, R. Principles of inter-
active Computer Graphics. McGraw-Hill, 1979.

NEXT. The NeXT System Reference Manual. NeXT,
Inc.. 1989.

[17] PALAY, A., HANSEN, W., KAZAR, M., SHERMAN, M.,

WADLOW, M., NEUENDORFFER, T., STERN, Z., BADER,
M., AND PETERS,T. The Andrew toolkit: An overview.
In Proceedings of the USENI.Y Technical Conference
(Dallas, February 1988), pp. 11-23.

[18 1 RHYNE, J. R., AND WOLF, C. G. Gestural interfaces

for information processing applications. Tech. Rep.
RC 12179, IBM T.J. Watson Research Center, IBM
Corporation, P.O. Box 218, Yorktown Heights, NY
10598, Sept. 1986.

[19] RUBINE, D. Integrating gesture recognition and di-
rect manipulation. In Proceedings ofrhe Summer ’91
USENIX Technical Conference (1991).

[20] RUBINE, D. The Automatic Recognition of Gesrures.
PhD thesis, School of Computer Science, Carnegie
Mellon University, forthcoming, 1991.

[21 I SUEN, C., BERTHOD, M., AND MORI, S. Automatic
recognition of handprinted characters: The state of
the art. Proceedings of the IEEE 68, 4 (April 1980),
469487.

[22] ZIMMERMAN, T., LANIER, J., BLANCHARD, C.,
BRYSON, S., AND HARVILL, Y. A hand gesture in-
terface device. CHl+G/ (1987), 189–1 92.

337

